Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/3620 |
Resumo: | This thesis proposes an evolving methodology for univariate or multivariate time series fore casting based on neuro-fuzzy network structure, updating its knowledge base for each new observation. This proposal has a hybrid characteristic, considering a neuro-fuzzy network whose consequents of fuzzy rules contain vector autoregression models. These models are composed by unobservable components, i. e., hidden patterns extracted from the time series. To extract these components, a recursive and parallel version of the Singular Spectrum Analysis (SSA) method is proposed in the paper. This version is named Parallel Recursive Singular Spectrum Analysis (PRSSA), and the parallel name is used because, for each time series, there is an asso ciated decomposition procedure. Unifying these methods, the proposed methodology is called PRSSA+ENFN (Parallel Recursive Singular Spectrum Analysis and Evolving Neuro-Fuzzy Network), highlighting its hybrid profile again. Hence, the PRSSA+ENFN method proposed applies the "divide to conquer" idea, i.e., it extracts the unobservable components and forecasts them separately using the neuro-fuzzy network, because these components has less complex behavior than the complete time series. After components forecasting, these results are grouped together to predict the original time series. Furthermore, the neuro-fuzzy network has an evolv ing characteristic, i.e., it considers the dynamic behavior of these components to evolve its structure for each new observation, where the number of fuzzy rules can increase or decrease according to this dynamic. The flexibility of the PRSSA+ENFN method with both univariate or multivariate time series was evaluated on the experimental results, considering the recurrent or direct type of forecasting. In addition, the proposed approach was compared with other studies and methods used in literature for time series forecasting, showing competitive results and the developed methodology can be used in cases involving complex and non-stationary time series. The PRSSA+ENFN was applied to a real problem related to the Covid-19 pandemic in Maranhão - Brazil, evaluating its behavior to forecast the daily numbers of cases and deaths caused by this disease. Then, this proposed method proved to be a potential approach to assist specialists in the decision-making process and to be explored in future works. |
id |
UFMA_a8e7e67ce4d0a2b4cecc188401ca4839 |
---|---|
oai_identifier_str |
oai:tede2:tede/3620 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
SERRA, Ginalber Luiz de Oliveirahttp://lattes.cnpq.br/0831092299374520SERRA, Ginalber Luiz de Oliveirahttp://lattes.cnpq.br/0831092299374520MUNARO, Celso Joséhttp://lattes.cnpq.br/5929530967371970GIESBRECHT, Mateushttp://lattes.cnpq.br/7480104217250652SOUZA, Francisco das Chagas dehttp://lattes.cnpq.br/2405363087479257PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512http://lattes.cnpq.br/3953062906519226RODRIGUES JÚNIOR, Selmo Eduardo2022-05-31T15:09:48Z2021-08-10RODRIGUES JÚNIOR, Selmo Eduardo. Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva. 2021. 223 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021.https://tedebc.ufma.br/jspui/handle/tede/3620This thesis proposes an evolving methodology for univariate or multivariate time series fore casting based on neuro-fuzzy network structure, updating its knowledge base for each new observation. This proposal has a hybrid characteristic, considering a neuro-fuzzy network whose consequents of fuzzy rules contain vector autoregression models. These models are composed by unobservable components, i. e., hidden patterns extracted from the time series. To extract these components, a recursive and parallel version of the Singular Spectrum Analysis (SSA) method is proposed in the paper. This version is named Parallel Recursive Singular Spectrum Analysis (PRSSA), and the parallel name is used because, for each time series, there is an asso ciated decomposition procedure. Unifying these methods, the proposed methodology is called PRSSA+ENFN (Parallel Recursive Singular Spectrum Analysis and Evolving Neuro-Fuzzy Network), highlighting its hybrid profile again. Hence, the PRSSA+ENFN method proposed applies the "divide to conquer" idea, i.e., it extracts the unobservable components and forecasts them separately using the neuro-fuzzy network, because these components has less complex behavior than the complete time series. After components forecasting, these results are grouped together to predict the original time series. Furthermore, the neuro-fuzzy network has an evolv ing characteristic, i.e., it considers the dynamic behavior of these components to evolve its structure for each new observation, where the number of fuzzy rules can increase or decrease according to this dynamic. The flexibility of the PRSSA+ENFN method with both univariate or multivariate time series was evaluated on the experimental results, considering the recurrent or direct type of forecasting. In addition, the proposed approach was compared with other studies and methods used in literature for time series forecasting, showing competitive results and the developed methodology can be used in cases involving complex and non-stationary time series. The PRSSA+ENFN was applied to a real problem related to the Covid-19 pandemic in Maranhão - Brazil, evaluating its behavior to forecast the daily numbers of cases and deaths caused by this disease. Then, this proposed method proved to be a potential approach to assist specialists in the decision-making process and to be explored in future works.Essa tese propõe uma metodologia evolutiva para previsão de séries temporais univariáveis ou multivariáveis baseada em uma estrutura de rede neuro-fuzzy, capaz de atualizar sua base de conhecimento para cada nova observação que chega. Essa proposta possui uma característica híbrida, pois utiliza uma rede neuro-fuzzy cujas regras fuzzy contêm em seus consequentes modelos de vetores autorregressivos (VAR). Esses modelos são constituídos pelas componentes não-observáveis, ou seja, são padrões ocultos extraídos a partir da série temporal. Para extrair essas componentes, uma versão recursiva e paralela do método SSA (Singular Spectrum Analysis) é proposta no trabalho. Denominou-se essa versão de PRSSA (Parallel Recursive Singular Spectrum Analysis), sendo que o nome paralelo está relacionado ao fato que, para cada série, há um procedimento de decomposição associado. Unificando esses métodos, a metodologia proposta tem o nome de PRSSA+ENFN (Parallel Recursive Singular Spectrum Analysis and Evolving Neuro-Fuzzy Network), destacando novamente seu perfil híbrido. Dessa maneira, o método PRSSA+ENFN proposto nessa pesquisa aplica a abordagem "dividir para conquistar", isto é, extrai as componentes não-observáveis e realiza suas previsões separadamente por meio da rede neuro-fuzzy, pois estas componentes apresentam comportamento menos complexo que a série temporal completa. Após a previsão das componentes, esses resultados são agrupados para prever a série temporal original. Ademais, a rede neuro-fuzzy tem característica evolutiva, ou seja, considera o comportamento dinâmico dessas componentes para evoluir sua estrutura a cada nova observação, cuja quantidade de regras fuzzy pode aumentar ou diminuir de acordo com essa dinâmica. Avaliou-se nos resultados experimentais a flexibilidade do método PRSSA+ENFN em trabalhar tanto com séries univariáveis quanto multivariáveis, realizando previsões do tipo recorrente ou direta. Além disso, a abordagem proposta foi comparada com outros trabalhos e métodos utilizados na literatura para previsão de séries temporais, apresentando resultados competitivos de previsão e que mostraram que a metodologia desenvolvida pode ser usada em casos envolvendo séries temporais complexas e não-estacionárias. Realizou-se também a aplicação do PRSSA+ENFN em um problema real relacionado à pandemia do Covid-19 no estado do Maranhão - Brasil, avaliando seu comportamento para previsão dos números diários de casos e mortes devido a essa doença. Dessa forma, esse método proposto se mostrou como uma potencial abordagem a fim de auxiliar os especialistas no processo de tomada de decisão e para continuar a ser explorada em trabalhos futuros.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2022-05-31T15:09:47Z No. of bitstreams: 1 SelmoRodrigues.pdf: 3739841 bytes, checksum: 9f82e29125959cd61c275f4b1c7c124a (MD5)Made available in DSpace on 2022-05-31T15:09:48Z (GMT). No. of bitstreams: 1 SelmoRodrigues.pdf: 3739841 bytes, checksum: 9f82e29125959cd61c275f4b1c7c124a (MD5) Previous issue date: 2021-08-10CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETredes neuro-fuzzy;previsão de séries temporais;modelos evolutivos;análise espectral singular;componentes não-observáveis;neuro-fuzzy networks;time series forecasting;evolving models;singular spec trum analysis;unobservable components.Engenharia ElétricaMetodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursivaIntelligent computational modeling methodology for time series prediction based on evolutionary systems and recursive singular spectral analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALSelmoRodrigues.pdfSelmoRodrigues.pdfapplication/pdf3739841http://tedebc.ufma.br:8080/bitstream/tede/3620/2/SelmoRodrigues.pdf9f82e29125959cd61c275f4b1c7c124aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3620/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/36202022-05-31 12:09:48.009oai:tede2:tede/3620IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-05-31T15:09:48Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
dc.title.alternative.eng.fl_str_mv |
Intelligent computational modeling methodology for time series prediction based on evolutionary systems and recursive singular spectral analysis |
title |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
spellingShingle |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva RODRIGUES JÚNIOR, Selmo Eduardo redes neuro-fuzzy; previsão de séries temporais; modelos evolutivos; análise espectral singular; componentes não-observáveis; neuro-fuzzy networks; time series forecasting; evolving models; singular spec trum analysis; unobservable components. Engenharia Elétrica |
title_short |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
title_full |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
title_fullStr |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
title_full_unstemmed |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
title_sort |
Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva |
author |
RODRIGUES JÚNIOR, Selmo Eduardo |
author_facet |
RODRIGUES JÚNIOR, Selmo Eduardo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SERRA, Ginalber Luiz de Oliveira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0831092299374520 |
dc.contributor.referee1.fl_str_mv |
SERRA, Ginalber Luiz de Oliveira |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0831092299374520 |
dc.contributor.referee2.fl_str_mv |
MUNARO, Celso José |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5929530967371970 |
dc.contributor.referee3.fl_str_mv |
GIESBRECHT, Mateus |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7480104217250652 |
dc.contributor.referee4.fl_str_mv |
SOUZA, Francisco das Chagas de |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/2405363087479257 |
dc.contributor.referee5.fl_str_mv |
PAIVA, Anselmo Cardoso de |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3953062906519226 |
dc.contributor.author.fl_str_mv |
RODRIGUES JÚNIOR, Selmo Eduardo |
contributor_str_mv |
SERRA, Ginalber Luiz de Oliveira SERRA, Ginalber Luiz de Oliveira MUNARO, Celso José GIESBRECHT, Mateus SOUZA, Francisco das Chagas de PAIVA, Anselmo Cardoso de |
dc.subject.por.fl_str_mv |
redes neuro-fuzzy; previsão de séries temporais; modelos evolutivos; análise espectral singular; componentes não-observáveis; |
topic |
redes neuro-fuzzy; previsão de séries temporais; modelos evolutivos; análise espectral singular; componentes não-observáveis; neuro-fuzzy networks; time series forecasting; evolving models; singular spec trum analysis; unobservable components. Engenharia Elétrica |
dc.subject.eng.fl_str_mv |
neuro-fuzzy networks; time series forecasting; evolving models; singular spec trum analysis; unobservable components. |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
description |
This thesis proposes an evolving methodology for univariate or multivariate time series fore casting based on neuro-fuzzy network structure, updating its knowledge base for each new observation. This proposal has a hybrid characteristic, considering a neuro-fuzzy network whose consequents of fuzzy rules contain vector autoregression models. These models are composed by unobservable components, i. e., hidden patterns extracted from the time series. To extract these components, a recursive and parallel version of the Singular Spectrum Analysis (SSA) method is proposed in the paper. This version is named Parallel Recursive Singular Spectrum Analysis (PRSSA), and the parallel name is used because, for each time series, there is an asso ciated decomposition procedure. Unifying these methods, the proposed methodology is called PRSSA+ENFN (Parallel Recursive Singular Spectrum Analysis and Evolving Neuro-Fuzzy Network), highlighting its hybrid profile again. Hence, the PRSSA+ENFN method proposed applies the "divide to conquer" idea, i.e., it extracts the unobservable components and forecasts them separately using the neuro-fuzzy network, because these components has less complex behavior than the complete time series. After components forecasting, these results are grouped together to predict the original time series. Furthermore, the neuro-fuzzy network has an evolv ing characteristic, i.e., it considers the dynamic behavior of these components to evolve its structure for each new observation, where the number of fuzzy rules can increase or decrease according to this dynamic. The flexibility of the PRSSA+ENFN method with both univariate or multivariate time series was evaluated on the experimental results, considering the recurrent or direct type of forecasting. In addition, the proposed approach was compared with other studies and methods used in literature for time series forecasting, showing competitive results and the developed methodology can be used in cases involving complex and non-stationary time series. The PRSSA+ENFN was applied to a real problem related to the Covid-19 pandemic in Maranhão - Brazil, evaluating its behavior to forecast the daily numbers of cases and deaths caused by this disease. Then, this proposed method proved to be a potential approach to assist specialists in the decision-making process and to be explored in future works. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-08-10 |
dc.date.accessioned.fl_str_mv |
2022-05-31T15:09:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES JÚNIOR, Selmo Eduardo. Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva. 2021. 223 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/3620 |
identifier_str_mv |
RODRIGUES JÚNIOR, Selmo Eduardo. Metodologia de modelagem computacional inteligente para previsão de séries temporais baseada em sistemas evolutivos e análise espectral singular recursiva. 2021. 223 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021. |
url |
https://tedebc.ufma.br/jspui/handle/tede/3620 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/3620/2/SelmoRodrigues.pdf http://tedebc.ufma.br:8080/bitstream/tede/3620/1/license.txt |
bitstream.checksum.fl_str_mv |
9f82e29125959cd61c275f4b1c7c124a 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1822522425163644928 |