Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA

Detalhes bibliográficos
Autor(a) principal: FERREIRA, Marcos Melo
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/3356
Resumo: Glaucoma is identified as one of the main causes of visual impairment, and the main cause of irreversible blindness. The main forms of the disease are primary open-angle glaucoma and primary angle-closure glaucoma. In people with angle-closure glaucoma, the anterior chamber angle narrows, consequently causing an increase in intraocular pressure causing damage to the optic nerve, causing partial or total vision loss. As the damage is irreversible, an early diagnosis is essential, but it is hampered due to the fact that the disease is asymptomatic in early stages. For early detection of the disease, routine imaging tests are recommended, one of which is Anterior Segment Optical Coherence Tomography, which allows an angle classification, which is essential for diagnosis. An analysis of this type of image requires a degree of interpretation on the part of specialists, because of this, the evaluation of many images requires a lot of time, which can lead to professional fatigue. The use of automated methods to assist in the interpretation of images would contribute to get diagnoses more quickly. In this work, an automated method is proposed to classify the anterior chamber angle, present in Anterior Segment images, based on deep learning, using convolutional neural networks. Initially, five pre-trained models of convolutional networks were adjusted to perform feature extraction and classify images. Next, the models were combined in a multilevel architecture, with the objective of increasing the classification capacity. As best result achieved an AUC value (Area Under the Curve) of 0.999.
id UFMA_ad895fd3c34ffe046546e3748e4c8648
oai_identifier_str oai:tede2:tede/3356
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling BRAZ JUNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629BRAZ JUNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641ARAÚJO, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844http://lattes.cnpq.br/6573361384439101FERREIRA, Marcos Melo2021-09-23T15:04:03Z2021-03-18FERREIRA, Marcos Melo. Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA. 2021. 59 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2021.https://tedebc.ufma.br/jspui/handle/tede/tede/3356Glaucoma is identified as one of the main causes of visual impairment, and the main cause of irreversible blindness. The main forms of the disease are primary open-angle glaucoma and primary angle-closure glaucoma. In people with angle-closure glaucoma, the anterior chamber angle narrows, consequently causing an increase in intraocular pressure causing damage to the optic nerve, causing partial or total vision loss. As the damage is irreversible, an early diagnosis is essential, but it is hampered due to the fact that the disease is asymptomatic in early stages. For early detection of the disease, routine imaging tests are recommended, one of which is Anterior Segment Optical Coherence Tomography, which allows an angle classification, which is essential for diagnosis. An analysis of this type of image requires a degree of interpretation on the part of specialists, because of this, the evaluation of many images requires a lot of time, which can lead to professional fatigue. The use of automated methods to assist in the interpretation of images would contribute to get diagnoses more quickly. In this work, an automated method is proposed to classify the anterior chamber angle, present in Anterior Segment images, based on deep learning, using convolutional neural networks. Initially, five pre-trained models of convolutional networks were adjusted to perform feature extraction and classify images. Next, the models were combined in a multilevel architecture, with the objective of increasing the classification capacity. As best result achieved an AUC value (Area Under the Curve) of 0.999.O glaucoma é apontado como sendo uma das principais causas de comprometimento da visão, e a principal causa de cegueira irreversível. As principais formas da doença são o glaucoma primário de ângulo aberto e o glaucoma primário de ângulo fechado. Em pessoas com glaucoma de ângulo fechado, ocorre o estreitamento do ângulo da câmara anterior, consequentemente acarretando o aumento da pressão intraocular provocando danos ao nervo óptico, causando perda parcial ou total da visão. Como os danos são irreversíveis, um diagnóstico precoce é essencial, porém é dificultado devido ao fato da doença ser assintomática nos estágios iniciais. Para detecção precoce da doença, são recomendados exames de imagem de rotina, sendo um deles a Tomografia de Coerência Óptica do Segmento Anterior, que permite a classificação do ângulo, fundamental para o diagnóstico. A análise deste tipo de imagem requer um grau de interpretação por parte dos especialistas, devido a isso, a avaliação de muitas imagens demanda muito tempo, podendo levar a fadiga do profissional. A utilização de métodos automáticos para auxiliar na interpretação das imagens contribuiria para obtenção de diagnósticos mais rapidamente. Neste trabalho é proposto um método automático para classificação do ângulo da câmara anterior, presente em imagens de Tomografia do Segmento Anterior, baseado em aprendizagem profunda, utilizando redes neurais convolucionais. Inicialmente, cinco modelos pré-treinados de redes convolucionais foram ajustados para extração de características e classificação das imagens. A seguir, os modelos foram combinados em uma arquitetura multinível, com o objetivo de se aumentar a capacidade de classificação. Como melhor resultado foi alcançado um valor AUC (do inglês, Area Under the Curve) de 0,999.Submitted by Sheila MONTEIRO (sheila.monteiro@ufma.br) on 2021-09-23T15:04:03Z No. of bitstreams: 1 MARCOS-FERREIRA.pdf: 1476133 bytes, checksum: eea35829b129edad3e78822f5d6428df (MD5)Made available in DSpace on 2021-09-23T15:04:03Z (GMT). No. of bitstreams: 1 MARCOS-FERREIRA.pdf: 1476133 bytes, checksum: eea35829b129edad3e78822f5d6428df (MD5) Previous issue date: 2021-03-18application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETGlaucomaRedes neurais convolucionaisArquitetura multinívelTransferência de aprendizadoGlaucomaConvolutional neural networksMultilevel architectureTransfer learningCiência da ComputaçãoRedes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SAMultilevel neural networks for anterior chamber angle classification using OCT-SA imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMARCOS-FERREIRA.pdfMARCOS-FERREIRA.pdfapplication/pdf1476133http://tedebc.ufma.br:8080/bitstream/tede/3356/2/MARCOS-FERREIRA.pdfeea35829b129edad3e78822f5d6428dfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3356/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/33562021-09-23 12:04:03.948oai:tede2:tede/3356IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312021-09-23T15:04:03Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
dc.title.alternative.eng.fl_str_mv Multilevel neural networks for anterior chamber angle classification using OCT-SA images
title Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
spellingShingle Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
FERREIRA, Marcos Melo
Glaucoma
Redes neurais convolucionais
Arquitetura multinível
Transferência de aprendizado
Glaucoma
Convolutional neural networks
Multilevel architecture
Transfer learning
Ciência da Computação
title_short Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
title_full Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
title_fullStr Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
title_full_unstemmed Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
title_sort Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA
author FERREIRA, Marcos Melo
author_facet FERREIRA, Marcos Melo
author_role author
dc.contributor.advisor1.fl_str_mv BRAZ JUNIOR, Geraldo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.referee1.fl_str_mv BRAZ JUNIOR, Geraldo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.referee2.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.referee3.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee4.fl_str_mv ARAÚJO, Sidnei Alves de
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6573361384439101
dc.contributor.author.fl_str_mv FERREIRA, Marcos Melo
contributor_str_mv BRAZ JUNIOR, Geraldo
BRAZ JUNIOR, Geraldo
PAIVA, Anselmo Cardoso de
ALMEIDA, João Dallyson Sousa de
ARAÚJO, Sidnei Alves de
dc.subject.por.fl_str_mv Glaucoma
Redes neurais convolucionais
Arquitetura multinível
Transferência de aprendizado
topic Glaucoma
Redes neurais convolucionais
Arquitetura multinível
Transferência de aprendizado
Glaucoma
Convolutional neural networks
Multilevel architecture
Transfer learning
Ciência da Computação
dc.subject.eng.fl_str_mv Glaucoma
Convolutional neural networks
Multilevel architecture
Transfer learning
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Glaucoma is identified as one of the main causes of visual impairment, and the main cause of irreversible blindness. The main forms of the disease are primary open-angle glaucoma and primary angle-closure glaucoma. In people with angle-closure glaucoma, the anterior chamber angle narrows, consequently causing an increase in intraocular pressure causing damage to the optic nerve, causing partial or total vision loss. As the damage is irreversible, an early diagnosis is essential, but it is hampered due to the fact that the disease is asymptomatic in early stages. For early detection of the disease, routine imaging tests are recommended, one of which is Anterior Segment Optical Coherence Tomography, which allows an angle classification, which is essential for diagnosis. An analysis of this type of image requires a degree of interpretation on the part of specialists, because of this, the evaluation of many images requires a lot of time, which can lead to professional fatigue. The use of automated methods to assist in the interpretation of images would contribute to get diagnoses more quickly. In this work, an automated method is proposed to classify the anterior chamber angle, present in Anterior Segment images, based on deep learning, using convolutional neural networks. Initially, five pre-trained models of convolutional networks were adjusted to perform feature extraction and classify images. Next, the models were combined in a multilevel architecture, with the objective of increasing the classification capacity. As best result achieved an AUC value (Area Under the Curve) of 0.999.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-23T15:04:03Z
dc.date.issued.fl_str_mv 2021-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, Marcos Melo. Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA. 2021. 59 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2021.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3356
identifier_str_mv FERREIRA, Marcos Melo. Redes neurais multinível para classificação do ângulo da câmara anterior utilizando Imagens OCT-SA. 2021. 59 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2021.
url https://tedebc.ufma.br/jspui/handle/tede/tede/3356
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3356/2/MARCOS-FERREIRA.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3356/1/license.txt
bitstream.checksum.fl_str_mv eea35829b129edad3e78822f5d6428df
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926198313091072