Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.

Detalhes bibliográficos
Autor(a) principal: Oliveira, Gabriel Ozeas de
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042021-085104/
Resumo: O glaucoma é o segundo causador de cegueira no mundo, atingindo estimadamente 76 milhões de pessoas em 2020. Devido a seu caráter irreversível, vários trabalhos de pesquisa na literatura apresentam métodos para o diagnóstico de glaucoma a fim de auxiliar na tomada de decisão do especialista. Alguns destes estudos empregam métodos de aprendizagem de máquina, apesar do lento e custoso processo de coleta de dados presente em várias áreas da medicina. Este trabalho apresentou uma análise sobre uso de redes generativas adversárias na geração de mapas de espessura RNFL (Retinal Nerve Fiber Layer) sintéticos para serem empregados no treinamento de classificadores para o diagnóstico de glaucoma. Especificamente, esta investigação tratou dos classificadores que utilizam redes neurais profundas e que necessitam de grande quantidade de dados para treinamento. Foram gerados mapas de espessura de RNFL sintéticos utilizando uma rede generativa adversária, criando 11 conjuntos de dados mistos com dados reais e dados sintéticos em diferentes proporções. Esses conjuntos de dados foram utilizados no treinamento de 8 redes neurais profundas para o auxílio ao diagnóstico de glaucoma. O desempenho dos classificadores foi medido através dos valores de AROC. Os melhores valores de AROC foram obtidos quando o conjunto de dados foi aumentado em 100 vezes, onde 50% dos dados eram sintéticos e 50% eram reais. O melhor valor de AROC foi 0,865, obtido pela rede VGG16. Tais resultados indicam que o uso de mapas de espessura de RNFL sintéticos gerados por redes generativas adversárias contribui para melhorar o desempenho de redes neurais profundas para o diagnóstico de glaucoma.
id USP_cae096475ed04a3bde4637544b1b9f15
oai_identifier_str oai:teses.usp.br:tde-01042021-085104
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.Geration of synthetic thickness maps through generative adversarial networks for training deep neural networks to assist glaucoma diagnosis.Aprendizado de computadorConvolutional neural networksDiagnóstico por computadorGenerative adversarial networksGlaucomaGlaucomaInteligência artificialMachine learningRedes neuraisO glaucoma é o segundo causador de cegueira no mundo, atingindo estimadamente 76 milhões de pessoas em 2020. Devido a seu caráter irreversível, vários trabalhos de pesquisa na literatura apresentam métodos para o diagnóstico de glaucoma a fim de auxiliar na tomada de decisão do especialista. Alguns destes estudos empregam métodos de aprendizagem de máquina, apesar do lento e custoso processo de coleta de dados presente em várias áreas da medicina. Este trabalho apresentou uma análise sobre uso de redes generativas adversárias na geração de mapas de espessura RNFL (Retinal Nerve Fiber Layer) sintéticos para serem empregados no treinamento de classificadores para o diagnóstico de glaucoma. Especificamente, esta investigação tratou dos classificadores que utilizam redes neurais profundas e que necessitam de grande quantidade de dados para treinamento. Foram gerados mapas de espessura de RNFL sintéticos utilizando uma rede generativa adversária, criando 11 conjuntos de dados mistos com dados reais e dados sintéticos em diferentes proporções. Esses conjuntos de dados foram utilizados no treinamento de 8 redes neurais profundas para o auxílio ao diagnóstico de glaucoma. O desempenho dos classificadores foi medido através dos valores de AROC. Os melhores valores de AROC foram obtidos quando o conjunto de dados foi aumentado em 100 vezes, onde 50% dos dados eram sintéticos e 50% eram reais. O melhor valor de AROC foi 0,865, obtido pela rede VGG16. Tais resultados indicam que o uso de mapas de espessura de RNFL sintéticos gerados por redes generativas adversárias contribui para melhorar o desempenho de redes neurais profundas para o diagnóstico de glaucoma.Glaucoma is the second leading cause of blindness in the world. Around 76 million people were affected by this disease in 2020. Due to the irreversible glaucoma nature, several studies in the literature presented early diagnosis methods to assist in decisionmaking specialists. Some of these studies employ machine learning methods despite the slow process of collecting data present in many medical fields. This work presents an analysis of generative adversarial networks in the generation of synthetic RNFL (retinal nerve fiber layer) thickness maps for use in the training of classifiers for the diagnosis of glaucoma. Mainly classifiers that use deep neural networks and require a large amount of data for training. Synthetic RNFL thickness maps were created using a generative adversarial network, creating 11 mixed datasets with real data and synthetic data in different proportions. These datasets were used in the training of 8 deep neural networks to aid in glaucoma diagnosis. Classifiers\' performance was measured using AROC values. Increasing the dataset by one hundred times gave the best AROC values, where 50 % of the data were synthetic, and 50 % were real. The best AROC value was 0.865, obtained by the VGG16 network. Such results indicate that the use of synthetic RNFL thickness maps generated by generative adversarial networks contributes to improving the performance of deep neural networks for the diagnosis of glaucoma.Biblioteca Digitais de Teses e Dissertações da USPGomi, Edson SatoshiOliveira, Gabriel Ozeas de2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042021-085104/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-04-01T18:24:02Zoai:teses.usp.br:tde-01042021-085104Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-01T18:24:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
Geration of synthetic thickness maps through generative adversarial networks for training deep neural networks to assist glaucoma diagnosis.
title Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
spellingShingle Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
Oliveira, Gabriel Ozeas de
Aprendizado de computador
Convolutional neural networks
Diagnóstico por computador
Generative adversarial networks
Glaucoma
Glaucoma
Inteligência artificial
Machine learning
Redes neurais
title_short Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
title_full Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
title_fullStr Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
title_full_unstemmed Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
title_sort Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.
author Oliveira, Gabriel Ozeas de
author_facet Oliveira, Gabriel Ozeas de
author_role author
dc.contributor.none.fl_str_mv Gomi, Edson Satoshi
dc.contributor.author.fl_str_mv Oliveira, Gabriel Ozeas de
dc.subject.por.fl_str_mv Aprendizado de computador
Convolutional neural networks
Diagnóstico por computador
Generative adversarial networks
Glaucoma
Glaucoma
Inteligência artificial
Machine learning
Redes neurais
topic Aprendizado de computador
Convolutional neural networks
Diagnóstico por computador
Generative adversarial networks
Glaucoma
Glaucoma
Inteligência artificial
Machine learning
Redes neurais
description O glaucoma é o segundo causador de cegueira no mundo, atingindo estimadamente 76 milhões de pessoas em 2020. Devido a seu caráter irreversível, vários trabalhos de pesquisa na literatura apresentam métodos para o diagnóstico de glaucoma a fim de auxiliar na tomada de decisão do especialista. Alguns destes estudos empregam métodos de aprendizagem de máquina, apesar do lento e custoso processo de coleta de dados presente em várias áreas da medicina. Este trabalho apresentou uma análise sobre uso de redes generativas adversárias na geração de mapas de espessura RNFL (Retinal Nerve Fiber Layer) sintéticos para serem empregados no treinamento de classificadores para o diagnóstico de glaucoma. Especificamente, esta investigação tratou dos classificadores que utilizam redes neurais profundas e que necessitam de grande quantidade de dados para treinamento. Foram gerados mapas de espessura de RNFL sintéticos utilizando uma rede generativa adversária, criando 11 conjuntos de dados mistos com dados reais e dados sintéticos em diferentes proporções. Esses conjuntos de dados foram utilizados no treinamento de 8 redes neurais profundas para o auxílio ao diagnóstico de glaucoma. O desempenho dos classificadores foi medido através dos valores de AROC. Os melhores valores de AROC foram obtidos quando o conjunto de dados foi aumentado em 100 vezes, onde 50% dos dados eram sintéticos e 50% eram reais. O melhor valor de AROC foi 0,865, obtido pela rede VGG16. Tais resultados indicam que o uso de mapas de espessura de RNFL sintéticos gerados por redes generativas adversárias contribui para melhorar o desempenho de redes neurais profundas para o diagnóstico de glaucoma.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042021-085104/
url https://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042021-085104/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090272672350208