Biologically inspired approaches to building spatial maps for spatial navigation and learning

Detalhes bibliográficos
Autor(a) principal: MENEZES, Matheus Chaves
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/5358
Resumo: Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles.
id UFMA_dfcb28294305190ab5b97015038b2099
oai_identifier_str oai:tede2:tede/5358
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling OLIVEIRA, Alexandre César Muniz dehttp://lattes.cnpq.br/5225588855422632CHENG, SenOLIVEIRA, Alexandre César Muniz dehttp://lattes.cnpq.br/5225588855422632FREITAS, Edison Pignaton dehttp://lattes.cnpq.br/2154028088891512BARONE, Dante Augusto Coutohttp://lattes.cnpq.br/8385283959153698COUTINHO, Luciano Reishttp://lattes.cnpq.br/5901564732655853ALMEIDA NETO, Areolino dehttp://lattes.cnpq.br/8041675571955870http://lattes.cnpq.br/5225992710518109MENEZES, Matheus Chaves2024-06-28T13:59:22Z2023-07-27MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023.https://tedebc.ufma.br/jspui/handle/tede/tede/5358Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles.Navegar por ambientes desconhecidos e buscar por recursos, como comida e água, é fundamental para a sobrevivência de muitos animais, incluindo os seres humanos. Por quase um século, pesquisas em neurociência comportamental e cognitiva apoiam a existência dos mapas cognitivos, sendo usados por animais para navegar no espaço. Mapas cognitivos permitem que animais realizem tarefas complexas, incluindo a aquisição de um mapa global a partir de ambientes distintos uma vez que as conexões entre eles são estabelecidas. Ademais, pesquisas apontam que a construção de um mapa cognitivo prévio à participação em tarefas recompensadas pode acelerar o processo de aprendizado, conforme evidenciado por experimentos de aprendizado latente. No entanto, os fatores específicos que contribuem para as diferenças observadas na velocidade de aprendizado, influenciadas por projetos experimentais e estratégias de exploração no aprendizado latente, permanecem uma questão em aberto. Esta tese de doutorado propõe novas abordagens computacionais inspiradas em princípios biológicos para a construção de mapas espaciais que facilitem a navegação e aprendizado espacial. O algoritmo de Localização e Mapeamento Simultâneos (SLAM), inspirado no processo de navegação no cérebro de roedores, conhecido como RatSLAM, foi ampliado através do desenvolvimento de uma nova abordagem de fusão de estruturas para lidar com o desafio do mapeamento em múltiplas sessões. O RatSLAM também é integrado como um algoritmo de aprendizado de representação de estado dentro do framework CoBeL-RL, um framework de aprendizado por reforço construído com base em descobertas recentes em neurociência, permitindo que agentes aprendam tarefas espaciais em ambientes desconhecidos. Ao utilizar esse framework, experimentos de aprendizado latente são investigados para obter percepções sobre o impacto dos diferentes projetos experimentais e estratégias de exploração na velocidade de aprendizado. Os resultados evidenciam o êxito do RatSLAM no mapeamento em múltiplas sessões com o uso de conjuntos de dados reais, bem como a habilidade de agentes virtuais de aprender tarefas espaciais em ambientes desconhecidos. Além disso, evidencia-se que os agentes desenvolvem Representações Sucessoras singulares, dependendo dos projetos experimentais específicos, o que oferece uma explicação potencial para as variações na velocidade do aprendizado nos experimentos de aprendizado latente. No geral, esta tese contribui para a robótica e neurociência computacional aprofundando a compreensão dos processos cognitivos envolvidos na navegação espacial e fornecendo percepções práticos para o desenvolvimento de sistemas robóticos mais eficazes e modelos computacionais inspirados em princípios biológicos.Submitted by Maria Aparecida (cidazen@gmail.com) on 2024-06-28T13:59:22Z No. of bitstreams: 1 _TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf: 22785792 bytes, checksum: 5c3eedba949d701f3be207a58a577786 (MD5)Made available in DSpace on 2024-06-28T13:59:22Z (GMT). No. of bitstreams: 1 _TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf: 22785792 bytes, checksum: 5c3eedba949d701f3be207a58a577786 (MD5) Previous issue date: 2023-07-27CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃOUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETNavegação Espacial;Mapas Cognitivos;Aprendizado Latente;Representações Sucessoras;RatSLAMSpatial Navigation;Cognitive Maps;Latent Learning;Successor Representation;RatSLAMArquitetura de Sistemas de ComputaçãoBiologically inspired approaches to building spatial maps for spatial navigation and learningAbordagens de inspiração biológica para a construção de mapas espaciais para navegação espacial e aprendizageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINAL_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdfapplication/pdf22785792http://tedebc.ufma.br:8080/bitstream/tede/5358/2/_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf5c3eedba949d701f3be207a58a577786MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/5358/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/53582024-06-28 10:59:22.755oai:tede2:tede/5358IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312024-06-28T13:59:22Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Biologically inspired approaches to building spatial maps for spatial navigation and learning
dc.title.alternative.por.fl_str_mv Abordagens de inspiração biológica para a construção de mapas espaciais para navegação espacial e aprendizagem
title Biologically inspired approaches to building spatial maps for spatial navigation and learning
spellingShingle Biologically inspired approaches to building spatial maps for spatial navigation and learning
MENEZES, Matheus Chaves
Navegação Espacial;
Mapas Cognitivos;
Aprendizado Latente;
Representações Sucessoras;
RatSLAM
Spatial Navigation;
Cognitive Maps;
Latent Learning;
Successor Representation;
RatSLAM
Arquitetura de Sistemas de Computação
title_short Biologically inspired approaches to building spatial maps for spatial navigation and learning
title_full Biologically inspired approaches to building spatial maps for spatial navigation and learning
title_fullStr Biologically inspired approaches to building spatial maps for spatial navigation and learning
title_full_unstemmed Biologically inspired approaches to building spatial maps for spatial navigation and learning
title_sort Biologically inspired approaches to building spatial maps for spatial navigation and learning
author MENEZES, Matheus Chaves
author_facet MENEZES, Matheus Chaves
author_role author
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Alexandre César Muniz de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5225588855422632
dc.contributor.advisor-co1.fl_str_mv CHENG, Sen
dc.contributor.referee1.fl_str_mv OLIVEIRA, Alexandre César Muniz de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5225588855422632
dc.contributor.referee2.fl_str_mv FREITAS, Edison Pignaton de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2154028088891512
dc.contributor.referee3.fl_str_mv BARONE, Dante Augusto Couto
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8385283959153698
dc.contributor.referee4.fl_str_mv COUTINHO, Luciano Reis
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/5901564732655853
dc.contributor.referee5.fl_str_mv ALMEIDA NETO, Areolino de
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/8041675571955870
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5225992710518109
dc.contributor.author.fl_str_mv MENEZES, Matheus Chaves
contributor_str_mv OLIVEIRA, Alexandre César Muniz de
CHENG, Sen
OLIVEIRA, Alexandre César Muniz de
FREITAS, Edison Pignaton de
BARONE, Dante Augusto Couto
COUTINHO, Luciano Reis
ALMEIDA NETO, Areolino de
dc.subject.por.fl_str_mv Navegação Espacial;
Mapas Cognitivos;
Aprendizado Latente;
Representações Sucessoras;
RatSLAM
topic Navegação Espacial;
Mapas Cognitivos;
Aprendizado Latente;
Representações Sucessoras;
RatSLAM
Spatial Navigation;
Cognitive Maps;
Latent Learning;
Successor Representation;
RatSLAM
Arquitetura de Sistemas de Computação
dc.subject.eng.fl_str_mv Spatial Navigation;
Cognitive Maps;
Latent Learning;
Successor Representation;
RatSLAM
dc.subject.cnpq.fl_str_mv Arquitetura de Sistemas de Computação
description Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles.
publishDate 2023
dc.date.issued.fl_str_mv 2023-07-27
dc.date.accessioned.fl_str_mv 2024-06-28T13:59:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/5358
identifier_str_mv MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023.
url https://tedebc.ufma.br/jspui/handle/tede/tede/5358
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/5358/2/_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf
http://tedebc.ufma.br:8080/bitstream/tede/5358/1/license.txt
bitstream.checksum.fl_str_mv 5c3eedba949d701f3be207a58a577786
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926181591449600