Biologically inspired approaches to building spatial maps for spatial navigation and learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/5358 |
Resumo: | Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles. |
id |
UFMA_dfcb28294305190ab5b97015038b2099 |
---|---|
oai_identifier_str |
oai:tede2:tede/5358 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
OLIVEIRA, Alexandre César Muniz dehttp://lattes.cnpq.br/5225588855422632CHENG, SenOLIVEIRA, Alexandre César Muniz dehttp://lattes.cnpq.br/5225588855422632FREITAS, Edison Pignaton dehttp://lattes.cnpq.br/2154028088891512BARONE, Dante Augusto Coutohttp://lattes.cnpq.br/8385283959153698COUTINHO, Luciano Reishttp://lattes.cnpq.br/5901564732655853ALMEIDA NETO, Areolino dehttp://lattes.cnpq.br/8041675571955870http://lattes.cnpq.br/5225992710518109MENEZES, Matheus Chaves2024-06-28T13:59:22Z2023-07-27MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023.https://tedebc.ufma.br/jspui/handle/tede/tede/5358Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles.Navegar por ambientes desconhecidos e buscar por recursos, como comida e água, é fundamental para a sobrevivência de muitos animais, incluindo os seres humanos. Por quase um século, pesquisas em neurociência comportamental e cognitiva apoiam a existência dos mapas cognitivos, sendo usados por animais para navegar no espaço. Mapas cognitivos permitem que animais realizem tarefas complexas, incluindo a aquisição de um mapa global a partir de ambientes distintos uma vez que as conexões entre eles são estabelecidas. Ademais, pesquisas apontam que a construção de um mapa cognitivo prévio à participação em tarefas recompensadas pode acelerar o processo de aprendizado, conforme evidenciado por experimentos de aprendizado latente. No entanto, os fatores específicos que contribuem para as diferenças observadas na velocidade de aprendizado, influenciadas por projetos experimentais e estratégias de exploração no aprendizado latente, permanecem uma questão em aberto. Esta tese de doutorado propõe novas abordagens computacionais inspiradas em princípios biológicos para a construção de mapas espaciais que facilitem a navegação e aprendizado espacial. O algoritmo de Localização e Mapeamento Simultâneos (SLAM), inspirado no processo de navegação no cérebro de roedores, conhecido como RatSLAM, foi ampliado através do desenvolvimento de uma nova abordagem de fusão de estruturas para lidar com o desafio do mapeamento em múltiplas sessões. O RatSLAM também é integrado como um algoritmo de aprendizado de representação de estado dentro do framework CoBeL-RL, um framework de aprendizado por reforço construído com base em descobertas recentes em neurociência, permitindo que agentes aprendam tarefas espaciais em ambientes desconhecidos. Ao utilizar esse framework, experimentos de aprendizado latente são investigados para obter percepções sobre o impacto dos diferentes projetos experimentais e estratégias de exploração na velocidade de aprendizado. Os resultados evidenciam o êxito do RatSLAM no mapeamento em múltiplas sessões com o uso de conjuntos de dados reais, bem como a habilidade de agentes virtuais de aprender tarefas espaciais em ambientes desconhecidos. Além disso, evidencia-se que os agentes desenvolvem Representações Sucessoras singulares, dependendo dos projetos experimentais específicos, o que oferece uma explicação potencial para as variações na velocidade do aprendizado nos experimentos de aprendizado latente. No geral, esta tese contribui para a robótica e neurociência computacional aprofundando a compreensão dos processos cognitivos envolvidos na navegação espacial e fornecendo percepções práticos para o desenvolvimento de sistemas robóticos mais eficazes e modelos computacionais inspirados em princípios biológicos.Submitted by Maria Aparecida (cidazen@gmail.com) on 2024-06-28T13:59:22Z No. of bitstreams: 1 _TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf: 22785792 bytes, checksum: 5c3eedba949d701f3be207a58a577786 (MD5)Made available in DSpace on 2024-06-28T13:59:22Z (GMT). No. of bitstreams: 1 _TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf: 22785792 bytes, checksum: 5c3eedba949d701f3be207a58a577786 (MD5) Previous issue date: 2023-07-27CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃOUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETNavegação Espacial;Mapas Cognitivos;Aprendizado Latente;Representações Sucessoras;RatSLAMSpatial Navigation;Cognitive Maps;Latent Learning;Successor Representation;RatSLAMArquitetura de Sistemas de ComputaçãoBiologically inspired approaches to building spatial maps for spatial navigation and learningAbordagens de inspiração biológica para a construção de mapas espaciais para navegação espacial e aprendizageminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINAL_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdfapplication/pdf22785792http://tedebc.ufma.br:8080/bitstream/tede/5358/2/_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf5c3eedba949d701f3be207a58a577786MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/5358/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/53582024-06-28 10:59:22.755oai:tede2:tede/5358IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312024-06-28T13:59:22Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
dc.title.alternative.por.fl_str_mv |
Abordagens de inspiração biológica para a construção de mapas espaciais para navegação espacial e aprendizagem |
title |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
spellingShingle |
Biologically inspired approaches to building spatial maps for spatial navigation and learning MENEZES, Matheus Chaves Navegação Espacial; Mapas Cognitivos; Aprendizado Latente; Representações Sucessoras; RatSLAM Spatial Navigation; Cognitive Maps; Latent Learning; Successor Representation; RatSLAM Arquitetura de Sistemas de Computação |
title_short |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
title_full |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
title_fullStr |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
title_full_unstemmed |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
title_sort |
Biologically inspired approaches to building spatial maps for spatial navigation and learning |
author |
MENEZES, Matheus Chaves |
author_facet |
MENEZES, Matheus Chaves |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
OLIVEIRA, Alexandre César Muniz de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5225588855422632 |
dc.contributor.advisor-co1.fl_str_mv |
CHENG, Sen |
dc.contributor.referee1.fl_str_mv |
OLIVEIRA, Alexandre César Muniz de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/5225588855422632 |
dc.contributor.referee2.fl_str_mv |
FREITAS, Edison Pignaton de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2154028088891512 |
dc.contributor.referee3.fl_str_mv |
BARONE, Dante Augusto Couto |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8385283959153698 |
dc.contributor.referee4.fl_str_mv |
COUTINHO, Luciano Reis |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/5901564732655853 |
dc.contributor.referee5.fl_str_mv |
ALMEIDA NETO, Areolino de |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/8041675571955870 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5225992710518109 |
dc.contributor.author.fl_str_mv |
MENEZES, Matheus Chaves |
contributor_str_mv |
OLIVEIRA, Alexandre César Muniz de CHENG, Sen OLIVEIRA, Alexandre César Muniz de FREITAS, Edison Pignaton de BARONE, Dante Augusto Couto COUTINHO, Luciano Reis ALMEIDA NETO, Areolino de |
dc.subject.por.fl_str_mv |
Navegação Espacial; Mapas Cognitivos; Aprendizado Latente; Representações Sucessoras; RatSLAM |
topic |
Navegação Espacial; Mapas Cognitivos; Aprendizado Latente; Representações Sucessoras; RatSLAM Spatial Navigation; Cognitive Maps; Latent Learning; Successor Representation; RatSLAM Arquitetura de Sistemas de Computação |
dc.subject.eng.fl_str_mv |
Spatial Navigation; Cognitive Maps; Latent Learning; Successor Representation; RatSLAM |
dc.subject.cnpq.fl_str_mv |
Arquitetura de Sistemas de Computação |
description |
Navigating unfamiliar spaces and searching for resources, such as food and water, is fundamental for survival in many animals, including humans. For nearly a century, behavioral and cognitive neuroscience research has supported the existence of cognitive maps, which animals employ to navigate spatially. Cognitive maps enable animals to perform complex tasks, including acquiring a global map from distinct contexts once connections are established. Furthermore, studies have revealed that building a cognitive map before engaging in reward-based tasks can enhance learning speed, as evidenced by latent learning experiences. However, the specific factors contributing to the observed differences in learning speed, as influenced by experimental design and exploration strategies in latent learning, remain an open question. This doctoral thesis proposes novel computational approaches inspired by biological principles for building spatial maps to facilitate spatial navigation and learning. The Simultaneous Localization and Mapping (SLAM) algorithm, inspired by the navigation process in rodent brains, known as RatSLAM, has been extended by developing a novel structure merge approach to address the challenge of multisession mapping. RatSLAM is also integrated as a state representation learning algorithm within the CoBeL-RL framework, a reinforcement learning framework built on recent neuroscience findings, enabling agents to learn spatial tasks in unknown environments. By utilizing this framework, latent learning experiments are investigated to gain insights into the impact of different experimental designs and exploration strategies on learning speed. The results demonstrate RatSLAM’s successful performance in multisession mapping using real-world datasets and the ability of virtual agents to learn spatial tasks in unfamiliar environments. Additionally, it is shown that agents acquire distinct Successor Representations based on the specific experimental designs, providing a potential explanation for variations in learning speed for latent learning experiments. Overall, this thesis contributes to robotics and computational neuroscience by deepening our understanding of the cognitive processes involved in spatial navigation and providing practical insights for developing more effective robotic systems and computational models inspired by biological principles. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-07-27 |
dc.date.accessioned.fl_str_mv |
2024-06-28T13:59:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/5358 |
identifier_str_mv |
MENEZES, Matheus Chaves. Biologically inspired approaches to building spatial maps for spatial navigation and learning. 2023. 108 f. Tese( Programa de Pós-graduação Doutorado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2023. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/5358 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/5358/2/_TESE__REVISAO_DCCMAPI__Biologically_inspired_approaches_to_building_spatial_maps_for_spatial_navigation_and_learning_assinado_assinado.pdf http://tedebc.ufma.br:8080/bitstream/tede/5358/1/license.txt |
bitstream.checksum.fl_str_mv |
5c3eedba949d701f3be207a58a577786 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926181591449600 |