Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital

Detalhes bibliográficos
Autor(a) principal: MENDES, Jean Pablo Marques
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/4312
Resumo: Mental health disorders have a high prevalence in the world population. With the coron- avirus (COVID-19) pandemic, there was a requirement for social distancing, aggravating problems related to mental health and well-being. The proliferation of smartphones presents opportunities for data collection to study human behavior and health. They have been used in mental health studies, as they have several embbeded sensors that can capture measurements in people’s daily lives. Traditionally, mental disorders are diagnosed by mental health professionals (e.g., psychiatrists, psychologists) on the basis of symptoms identified from patient interviews and self-reported experiences. However, patients often resort to events that occurred days, weeks or months ago, which can compromise the diag- nosis, due to memory and desirability biases. To mitigate these biases, digital phenotyping appears, collecting data passively (without direct user interaction) using mobile devices. This work aims to present a framework to facilitate the development of digital phenotyping mobile applications, called OpenDP. The proposed solution is extensible and reusable, as it allows the inclusion of modules for processing raw context data, and can be applied to different mental disorders and to the monitoring of human well-being. In addition, the framework was developed using the middleware M-Hub/CDDL to collect data from sensors (physical and virtual) and distribute them among the internal components of the framework and with the broker external. Case studies were conducted to demonstrate that the proposed solution was able to compose digital phenotypes from the inference of high-level information generated by the data processing modules. It was also demonstrated the ability of the mobile solution to add data processing modules (plugins). By aiming at developing a mobile solution for mobile devices that does not cause a great impact on energy consumption, an experimental evaluation was carried out analyzing the impact on energy consumption of the smartphone user. The results were satisfactory, showing through the experimental evaluation that the battery consumption was small.
id UFMA_f6f5c1e75b4375cbbf8e70a18ed0ee24
oai_identifier_str oai:tede2:tede/4312
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling TELES, Ariel Soareshttp://lattes.cnpq.br/5012476998883237SILVA, Francisco José da Silva ehttp://lattes.cnpq.br/0770343284012942TELES, Ariel Soareshttp://lattes.cnpq.br/5012476998883237SILVA, Francisco José da Silva ehttp://lattes.cnpq.br/0770343284012942COUTINHO, Luciano Reishttp://lattes.cnpq.br/5901564732655853RODRIGUES, Joel José Puga Coelhohttp://lattes.cnpq.br/5050313480683695http://lattes.cnpq.br/2687494452031045MENDES, Jean Pablo Marques2022-11-21T12:43:46Z2022-05-06MENDES, Jean Pablo Marques. Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital. 2022. 91 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/tede/4312Mental health disorders have a high prevalence in the world population. With the coron- avirus (COVID-19) pandemic, there was a requirement for social distancing, aggravating problems related to mental health and well-being. The proliferation of smartphones presents opportunities for data collection to study human behavior and health. They have been used in mental health studies, as they have several embbeded sensors that can capture measurements in people’s daily lives. Traditionally, mental disorders are diagnosed by mental health professionals (e.g., psychiatrists, psychologists) on the basis of symptoms identified from patient interviews and self-reported experiences. However, patients often resort to events that occurred days, weeks or months ago, which can compromise the diag- nosis, due to memory and desirability biases. To mitigate these biases, digital phenotyping appears, collecting data passively (without direct user interaction) using mobile devices. This work aims to present a framework to facilitate the development of digital phenotyping mobile applications, called OpenDP. The proposed solution is extensible and reusable, as it allows the inclusion of modules for processing raw context data, and can be applied to different mental disorders and to the monitoring of human well-being. In addition, the framework was developed using the middleware M-Hub/CDDL to collect data from sensors (physical and virtual) and distribute them among the internal components of the framework and with the broker external. Case studies were conducted to demonstrate that the proposed solution was able to compose digital phenotypes from the inference of high-level information generated by the data processing modules. It was also demonstrated the ability of the mobile solution to add data processing modules (plugins). By aiming at developing a mobile solution for mobile devices that does not cause a great impact on energy consumption, an experimental evaluation was carried out analyzing the impact on energy consumption of the smartphone user. The results were satisfactory, showing through the experimental evaluation that the battery consumption was small.Os transtornos de saúde mental têm alta prevalência na população mundial. Com a pan- demia do coronavírus (COVID-19), houve a exigência de distanciamento social, agravando os problemas relacionados a saúde mental e bem-estar. A proliferação dos smartphones apresenta oportunidades para a coleta de dados para estudar o comportamento e saúde hu- mana. Eles têm sido utilizados em estudos na saúde mental, por possuírem vários sensores embutidos que podem capturar medições no dia-a-dia das pessoas. Tradicionalmente, os transtornos mentais são diagnosticados por profissionais de saúde mental (e.g., psiquiatras, psicólogos) apenas com base nos sintomas identificados a partir de entrevistas com pacien- tes e experiências autor-relatadas. No entanto, os pacientes costumam recorrer a eventos ocorridos dias, semanas ou meses atrás, o que pode comprometer o diagnóstico, devido ao vieses de memória e desejabilidade. Para mitigar esses vieses, surge a fenotipagem digital, coletando dados de forma passiva (sem interação direta do usuário) com uso de dispositivos móveis. Este trabalho visa apresentar um framework para facilitar o desenvolvimento de aplicativos móveis de fenotipagem digital, chamado OpenDP. A solução proposta é extensível e reusável, por permitir a inclusão de módulos de processamento de dados brutos de contexto, e podendo ser aplicada a diferentes transtornos mentais e ao monitoramento do bem-estar humano. Além disso, o framework foi desenvolvido sobre o middleware Mobile Hub (M-Hub)/Camada de Distribuição de Dados de Contexto (CDDL) para coletar os dados de sensores (físicos e virtuais) e distribuí-los entre os componentes internos do framework e com o broker externo. Estudos de caso foram conduzidos para demonstrar que a solução proposta conseguiu compor fenótipos digitais a partir da inferência de informações de alto nível geradas pelos módulos de processamento de dados. Também foi demonstrado a capacidade da solução móvel em adicionar módulos de processamento de dados (plugins). Visando desenvolvedor uma solução móvel para dispositivos móveis que não cause um grande impacto no consumo de energia, foi realizada uma avaliação experimental analisando o impacto no consumo de energia do smartphone do usuário. Os resultados foram satisfatórios, mostrando através da avaliação experimental que o consumo de bateria foi pequeno.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-11-21T12:43:46Z No. of bitstreams: 1 JEANPABLOMARQUESMENDES.pdf: 4514553 bytes, checksum: dae24e23a9efbe5e83aa7c26fbf4a63f (MD5)Made available in DSpace on 2022-11-21T12:43:46Z (GMT). No. of bitstreams: 1 JEANPABLOMARQUESMENDES.pdf: 4514553 bytes, checksum: dae24e23a9efbe5e83aa7c26fbf4a63f (MD5) Previous issue date: 2022-05-06CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETSaúde Mental;Fenotipagem Digital;monitoramento remoto;aplicações de sensoriamento;framework.Mental Health;digital phenotyping;remote monitoring;sensing applications;framework.Ciência da ComputaçãoUm framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digitalA framework to facilitate the development of digital phenotyping mobile applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALJEANPABLOMARQUESMENDES.pdfJEANPABLOMARQUESMENDES.pdfapplication/pdf4514553http://tedebc.ufma.br:8080/bitstream/tede/4312/2/JEANPABLOMARQUESMENDES.pdfdae24e23a9efbe5e83aa7c26fbf4a63fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4312/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/43122022-11-21 09:43:46.458oai:tede2:tede/4312IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-11-21T12:43:46Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
dc.title.alternative.eng.fl_str_mv A framework to facilitate the development of digital phenotyping mobile applications
title Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
spellingShingle Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
MENDES, Jean Pablo Marques
Saúde Mental;
Fenotipagem Digital;
monitoramento remoto;
aplicações de sensoriamento;
framework.
Mental Health;
digital phenotyping;
remote monitoring;
sensing applications;
framework.
Ciência da Computação
title_short Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
title_full Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
title_fullStr Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
title_full_unstemmed Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
title_sort Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital
author MENDES, Jean Pablo Marques
author_facet MENDES, Jean Pablo Marques
author_role author
dc.contributor.advisor1.fl_str_mv TELES, Ariel Soares
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5012476998883237
dc.contributor.advisor-co1.fl_str_mv SILVA, Francisco José da Silva e
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0770343284012942
dc.contributor.referee1.fl_str_mv TELES, Ariel Soares
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5012476998883237
dc.contributor.referee2.fl_str_mv SILVA, Francisco José da Silva e
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0770343284012942
dc.contributor.referee3.fl_str_mv COUTINHO, Luciano Reis
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5901564732655853
dc.contributor.referee4.fl_str_mv RODRIGUES, Joel José Puga Coelho
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/5050313480683695
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2687494452031045
dc.contributor.author.fl_str_mv MENDES, Jean Pablo Marques
contributor_str_mv TELES, Ariel Soares
SILVA, Francisco José da Silva e
TELES, Ariel Soares
SILVA, Francisco José da Silva e
COUTINHO, Luciano Reis
RODRIGUES, Joel José Puga Coelho
dc.subject.por.fl_str_mv Saúde Mental;
Fenotipagem Digital;
monitoramento remoto;
aplicações de sensoriamento;
framework.
topic Saúde Mental;
Fenotipagem Digital;
monitoramento remoto;
aplicações de sensoriamento;
framework.
Mental Health;
digital phenotyping;
remote monitoring;
sensing applications;
framework.
Ciência da Computação
dc.subject.eng.fl_str_mv Mental Health;
digital phenotyping;
remote monitoring;
sensing applications;
framework.
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Mental health disorders have a high prevalence in the world population. With the coron- avirus (COVID-19) pandemic, there was a requirement for social distancing, aggravating problems related to mental health and well-being. The proliferation of smartphones presents opportunities for data collection to study human behavior and health. They have been used in mental health studies, as they have several embbeded sensors that can capture measurements in people’s daily lives. Traditionally, mental disorders are diagnosed by mental health professionals (e.g., psychiatrists, psychologists) on the basis of symptoms identified from patient interviews and self-reported experiences. However, patients often resort to events that occurred days, weeks or months ago, which can compromise the diag- nosis, due to memory and desirability biases. To mitigate these biases, digital phenotyping appears, collecting data passively (without direct user interaction) using mobile devices. This work aims to present a framework to facilitate the development of digital phenotyping mobile applications, called OpenDP. The proposed solution is extensible and reusable, as it allows the inclusion of modules for processing raw context data, and can be applied to different mental disorders and to the monitoring of human well-being. In addition, the framework was developed using the middleware M-Hub/CDDL to collect data from sensors (physical and virtual) and distribute them among the internal components of the framework and with the broker external. Case studies were conducted to demonstrate that the proposed solution was able to compose digital phenotypes from the inference of high-level information generated by the data processing modules. It was also demonstrated the ability of the mobile solution to add data processing modules (plugins). By aiming at developing a mobile solution for mobile devices that does not cause a great impact on energy consumption, an experimental evaluation was carried out analyzing the impact on energy consumption of the smartphone user. The results were satisfactory, showing through the experimental evaluation that the battery consumption was small.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-11-21T12:43:46Z
dc.date.issued.fl_str_mv 2022-05-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENDES, Jean Pablo Marques. Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital. 2022. 91 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/4312
identifier_str_mv MENDES, Jean Pablo Marques. Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital. 2022. 91 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís.
url https://tedebc.ufma.br/jspui/handle/tede/tede/4312
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/4312/2/JEANPABLOMARQUESMENDES.pdf
http://tedebc.ufma.br:8080/bitstream/tede/4312/1/license.txt
bitstream.checksum.fl_str_mv dae24e23a9efbe5e83aa7c26fbf4a63f
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926209640857600