Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Caderno de Ciências Agrárias (Online) |
Texto Completo: | https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357 |
Resumo: | In this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. |
id |
UFMG-1_1b59ce74377fb8f3e5299f584d9bd819 |
---|---|
oai_identifier_str |
oai:periodicos.ufmg.br:article/15357 |
network_acronym_str |
UFMG-1 |
network_name_str |
Caderno de Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithmTécnica de seleção de variáveis em problemas de classificação de falhas aplicada em processo industrial usando o algoritmo genético MOEADDIndústriaKNNOperadores GenéticosInteligência ComputacionalIndustryKNNGenetic OperatorsComputational intelligenceIn this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. En este trabajo, proponemos un método de selección variable llamado MOEADD-KNN-M, que se basa en el algoritmo genético MOEADD, el clasificador KNN (K-vecinos más cercanos) y operadores genéticos adaptados. El enfoque adoptado en el algoritmo propuesto es bi-objetivo y los experimentos se realizaron con datos de un proceso industrial petroquímico llamado Tennessee Eastman para la clasificación de fallas, lo que demuestra que el método propuesto conduce a soluciones con bajo error de clasificación y bajo número de sensores. son las cantidades buscadas para ser minimizadas. Por lo tanto, este enfoque se ha mostrado prometedor para el estudio del problema de selección de variables, que se demostrará a partir de los resultados obtenidos experimentalmente.Neste trabalho é proposto um método de seleção de variáveis denominado MOEADD-KNN-M, que é baseado no algoritmo genético MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), no algoritmo de classificação KNN (K-nearest neighbors), e em operadores genéticos adaptados. A abordagem adotada no algoritmo proposto é bi-objetivo, onde um objetivo é minimizar a quantidade de variáveis da solução e outro objetivo é minimizar a taxa de erro de classificação de falhas. Foram realizados experimentos com o método proposto empregando dados de um processo industrial petroquímico real, denominado Tennessee Eastman para classificação de falhas, e os resultados obtidos foram comparados com outros algoritmos. Os resultados demonstraram que o método proposto leva a soluções com baixo erro de classificação e pouca quantidade de sensores, que são as quantidades procuradas para serem minimizadas. Sendo assim, essa abordagem se mostrou promissora para a aplicação na seleção de variáveis em problemas de classificação de falhas em processos industriais.Universidade Federal de Minas Gerais2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/1535710.35699/2447-6218.2019.15357Agrarian Sciences Journal; Vol. 11 (2019); 1-6Caderno de Ciências Agrárias; v. 11 (2019); 1-62447-62181984-6738reponame:Caderno de Ciências Agrárias (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGporhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12968https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12969Copyright (c) 2019 Caderno de Ciências Agráriasinfo:eu-repo/semantics/openAccessFreire, Leonardo MacedoGabriel Filho, Luiz CarlosCosta, Luana Michelly Aparecida daD'Angelo, Marcos Flávio Silveira VasconcelosInácio, Maurílio JoséGonçalves, Rosivaldo Antônio2020-10-05T16:30:10Zoai:periodicos.ufmg.br:article/15357Revistahttps://periodicos.ufmg.br/index.php/ccaufmgPUBhttps://periodicos.ufmg.br/index.php/ccaufmg/oaiccaufmg@ica.ufmg.br2447-62181984-6738opendoar:2020-10-05T16:30:10Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm Técnica de seleção de variáveis em problemas de classificação de falhas aplicada em processo industrial usando o algoritmo genético MOEADD |
title |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
spellingShingle |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm Freire, Leonardo Macedo Indústria KNN Operadores Genéticos Inteligência Computacional Industry KNN Genetic Operators Computational intelligence |
title_short |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
title_full |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
title_fullStr |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
title_full_unstemmed |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
title_sort |
Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm |
author |
Freire, Leonardo Macedo |
author_facet |
Freire, Leonardo Macedo Gabriel Filho, Luiz Carlos Costa, Luana Michelly Aparecida da D'Angelo, Marcos Flávio Silveira Vasconcelos Inácio, Maurílio José Gonçalves, Rosivaldo Antônio |
author_role |
author |
author2 |
Gabriel Filho, Luiz Carlos Costa, Luana Michelly Aparecida da D'Angelo, Marcos Flávio Silveira Vasconcelos Inácio, Maurílio José Gonçalves, Rosivaldo Antônio |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Freire, Leonardo Macedo Gabriel Filho, Luiz Carlos Costa, Luana Michelly Aparecida da D'Angelo, Marcos Flávio Silveira Vasconcelos Inácio, Maurílio José Gonçalves, Rosivaldo Antônio |
dc.subject.por.fl_str_mv |
Indústria KNN Operadores Genéticos Inteligência Computacional Industry KNN Genetic Operators Computational intelligence |
topic |
Indústria KNN Operadores Genéticos Inteligência Computacional Industry KNN Genetic Operators Computational intelligence |
description |
In this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357 10.35699/2447-6218.2019.15357 |
url |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357 |
identifier_str_mv |
10.35699/2447-6218.2019.15357 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12968 https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12969 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Caderno de Ciências Agrárias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Caderno de Ciências Agrárias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
dc.source.none.fl_str_mv |
Agrarian Sciences Journal; Vol. 11 (2019); 1-6 Caderno de Ciências Agrárias; v. 11 (2019); 1-6 2447-6218 1984-6738 reponame:Caderno de Ciências Agrárias (Online) instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Caderno de Ciências Agrárias (Online) |
collection |
Caderno de Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
ccaufmg@ica.ufmg.br |
_version_ |
1797042443463426048 |