Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm

Detalhes bibliográficos
Autor(a) principal: Freire, Leonardo Macedo
Data de Publicação: 2019
Outros Autores: Gabriel Filho, Luiz Carlos, Costa, Luana Michelly Aparecida da, D'Angelo, Marcos Flávio Silveira Vasconcelos, Inácio, Maurílio José, Gonçalves, Rosivaldo Antônio
Tipo de documento: Artigo
Idioma: por
Título da fonte: Caderno de Ciências Agrárias (Online)
Texto Completo: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357
Resumo: In this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. 
id UFMG-1_1b59ce74377fb8f3e5299f584d9bd819
oai_identifier_str oai:periodicos.ufmg.br:article/15357
network_acronym_str UFMG-1
network_name_str Caderno de Ciências Agrárias (Online)
repository_id_str
spelling Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithmTécnica de seleção de variáveis em problemas de classificação de falhas aplicada em processo industrial usando o algoritmo genético MOEADDIndústriaKNNOperadores GenéticosInteligência ComputacionalIndustryKNNGenetic OperatorsComputational intelligenceIn this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. En este trabajo, proponemos un método de selección variable llamado MOEADD-KNN-M, que se basa en el algoritmo genético MOEADD,  el clasificador KNN (K-vecinos más cercanos) y operadores genéticos adaptados. El enfoque adoptado en el algoritmo propuesto  es bi-objetivo y los experimentos se realizaron con datos de un proceso industrial petroquímico llamado Tennessee Eastman para  la clasificación de fallas, lo que demuestra que el método propuesto conduce a soluciones con bajo error de clasificación y bajo  número de sensores. son las cantidades buscadas para ser minimizadas. Por lo tanto, este enfoque se ha mostrado prometedor para el  estudio del problema de selección de variables, que se demostrará a partir de los resultados obtenidos experimentalmente.Neste trabalho é proposto um  método de seleção de variáveis denominado MOEADD-KNN-M, que é baseado no algoritmo genético MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), no algoritmo de classificação KNN (K-nearest neighbors), e em operadores genéticos adaptados. A abordagem adotada no algoritmo proposto é bi-objetivo, onde um objetivo é minimizar a quantidade de variáveis da solução e outro objetivo é minimizar a taxa de erro de classificação de falhas. Foram realizados  experimentos com o método proposto empregando dados de um processo industrial petroquímico real, denominado Tennessee Eastman para classificação de falhas, e os resultados obtidos foram comparados com outros algoritmos. Os resultados demonstraram que o método proposto leva a soluções com baixo erro de classificação e pouca quantidade de sensores, que são as quantidades procuradas para serem minimizadas. Sendo assim, essa abordagem se mostrou promissora para a aplicação na seleção de variáveis em problemas de classificação de falhas em processos industriais.Universidade Federal de Minas Gerais2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/1535710.35699/2447-6218.2019.15357Agrarian Sciences Journal; Vol. 11 (2019); 1-6Caderno de Ciências Agrárias; v. 11 (2019); 1-62447-62181984-6738reponame:Caderno de Ciências Agrárias (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGporhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12968https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12969Copyright (c) 2019 Caderno de Ciências Agráriasinfo:eu-repo/semantics/openAccessFreire, Leonardo MacedoGabriel Filho, Luiz CarlosCosta, Luana Michelly Aparecida daD'Angelo, Marcos Flávio Silveira VasconcelosInácio, Maurílio JoséGonçalves, Rosivaldo Antônio2020-10-05T16:30:10Zoai:periodicos.ufmg.br:article/15357Revistahttps://periodicos.ufmg.br/index.php/ccaufmgPUBhttps://periodicos.ufmg.br/index.php/ccaufmg/oaiccaufmg@ica.ufmg.br2447-62181984-6738opendoar:2020-10-05T16:30:10Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
Técnica de seleção de variáveis em problemas de classificação de falhas aplicada em processo industrial usando o algoritmo genético MOEADD
title Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
spellingShingle Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
Freire, Leonardo Macedo
Indústria
KNN
Operadores Genéticos
Inteligência Computacional
Industry
KNN
Genetic Operators
Computational intelligence
title_short Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
title_full Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
title_fullStr Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
title_full_unstemmed Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
title_sort Variable selection technique in fault classification problems applied in industrial process using the MOEADD genetic algorithm
author Freire, Leonardo Macedo
author_facet Freire, Leonardo Macedo
Gabriel Filho, Luiz Carlos
Costa, Luana Michelly Aparecida da
D'Angelo, Marcos Flávio Silveira Vasconcelos
Inácio, Maurílio José
Gonçalves, Rosivaldo Antônio
author_role author
author2 Gabriel Filho, Luiz Carlos
Costa, Luana Michelly Aparecida da
D'Angelo, Marcos Flávio Silveira Vasconcelos
Inácio, Maurílio José
Gonçalves, Rosivaldo Antônio
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Freire, Leonardo Macedo
Gabriel Filho, Luiz Carlos
Costa, Luana Michelly Aparecida da
D'Angelo, Marcos Flávio Silveira Vasconcelos
Inácio, Maurílio José
Gonçalves, Rosivaldo Antônio
dc.subject.por.fl_str_mv Indústria
KNN
Operadores Genéticos
Inteligência Computacional
Industry
KNN
Genetic Operators
Computational intelligence
topic Indústria
KNN
Operadores Genéticos
Inteligência Computacional
Industry
KNN
Genetic Operators
Computational intelligence
description In this work we propose a method of variable selection called MOEADD-KNN-M, which is based on the genetic algorithm MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), on the classification algorithm KNN (K-nearest neighbors), and in adapted genetic operators. The approach adopted in the proposed algorithm is bi-objective, where one objective is to minimize the amount of solution variables and another objective is to minimize the failure classification error rate. Experiments were performed with the proposed method using data from a real petrochemical industrial process, called Tennessee Eastman for failure classification, and the results were compared with other algorithms. The results showed that the proposed method leads to solutions with low classification error and low number of sensors, which are the quantities sought to be minimized. Thus, this approach has shown promise for application in the selection of variables in fault classification problems in industrial processes. 
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357
10.35699/2447-6218.2019.15357
url https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357
identifier_str_mv 10.35699/2447-6218.2019.15357
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12968
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15357/12969
dc.rights.driver.fl_str_mv Copyright (c) 2019 Caderno de Ciências Agrárias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Caderno de Ciências Agrárias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv Agrarian Sciences Journal; Vol. 11 (2019); 1-6
Caderno de Ciências Agrárias; v. 11 (2019); 1-6
2447-6218
1984-6738
reponame:Caderno de Ciências Agrárias (Online)
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Caderno de Ciências Agrárias (Online)
collection Caderno de Ciências Agrárias (Online)
repository.name.fl_str_mv Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv ccaufmg@ica.ufmg.br
_version_ 1797042443463426048