Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Caderno de Ciências Agrárias (Online) |
Texto Completo: | https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926 |
Resumo: | Dietary fibers are formed by non-starch polysaccharides as cellulose, hemicellulose, pectins, gums, mucilages, β-glucans, among others. These constituents have prebiotic properties and are therefore not digested in the gut, reaching intact in the colon and altering the microflora of the colon. In developing, beneficial microflora produces physiological effects capable of improving the life of the host. Thus, the knowledge of the biological and functional properties of dietary fibers has led to the development of methods of obtaining these compounds for possible use in animal nutrition. Then, this study aimed to obtain dietary fiber concentrates (DFC) from different agro-industrial sources and evaluate their respective chemical composition and physicochemical properties. The DFC - mucilage, pectin, and βglucan + mannan (βG+M) were obtained from linseed, citrus pulp, and brewer’s yeast (Saccharomyces cerevisiae), respectively, through different physicochemical processes. The chemical composition revealed that the predominant component in all DFC were dietary fiber and the insoluble fraction. The DFC that obtained most extraction yield was βG+M (19.81% ± 8.54), followed by pectin (14.54% ± 2.72), and mucilage (7.18% ± 1.54). The mucilage and pectin composition have greater monosaccharide diversity since the βG+M consisted primarily of mannose (74.5%) and glucose (24.3%). The pectin showed numerically lower hydration capacity than the other DFC. For the oil binding ability, all DFC had similar values. In this study, the DFC presented nutritional and technological characteristics that indicate potential application of the agro-industrial sources as a prebiotic for fish supplementation. |
id |
UFMG-1_ecd0c3791bdf12f63d958da078af566a |
---|---|
oai_identifier_str |
oai:periodicos.ufmg.br:article/18926 |
network_acronym_str |
UFMG-1 |
network_name_str |
Caderno de Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutritionCaracterização e propriedades físico químicas de concentrados de fibras alimentares como potenciais ingredientes prebióticos para uso na nutrição de peixesβ-glucana mananaAlimentação de peixesLinhaçaMucilagemPectinaβ-glucan mannanFish feedsLinseedMucilagePectinDietary fibers are formed by non-starch polysaccharides as cellulose, hemicellulose, pectins, gums, mucilages, β-glucans, among others. These constituents have prebiotic properties and are therefore not digested in the gut, reaching intact in the colon and altering the microflora of the colon. In developing, beneficial microflora produces physiological effects capable of improving the life of the host. Thus, the knowledge of the biological and functional properties of dietary fibers has led to the development of methods of obtaining these compounds for possible use in animal nutrition. Then, this study aimed to obtain dietary fiber concentrates (DFC) from different agro-industrial sources and evaluate their respective chemical composition and physicochemical properties. The DFC - mucilage, pectin, and βglucan + mannan (βG+M) were obtained from linseed, citrus pulp, and brewer’s yeast (Saccharomyces cerevisiae), respectively, through different physicochemical processes. The chemical composition revealed that the predominant component in all DFC were dietary fiber and the insoluble fraction. The DFC that obtained most extraction yield was βG+M (19.81% ± 8.54), followed by pectin (14.54% ± 2.72), and mucilage (7.18% ± 1.54). The mucilage and pectin composition have greater monosaccharide diversity since the βG+M consisted primarily of mannose (74.5%) and glucose (24.3%). The pectin showed numerically lower hydration capacity than the other DFC. For the oil binding ability, all DFC had similar values. In this study, the DFC presented nutritional and technological characteristics that indicate potential application of the agro-industrial sources as a prebiotic for fish supplementation.As fibras alimentares são formadas por polissacarídeos não amiláceos como celulose, hemicelulose, pectinas, gomas, mucilagens, β-glicanos, entre outros. Estes constituintes têm propriedades prebióticas e, portanto, não são digeridos no intestino, atingindo intactos e alterando a microflora do cólon. Quando desenvolvida, a microflora benéfica produz efeitos fisiológicos capazes de melhorar a vida do hospedeiro. Desta forma, o conhecimento das propriedades biológicas e funcionais das fibras alimentares levou ao desenvolvimento de métodos de obtenção desses compostos para possível uso em nutrição animal. Logo, o presente estudo teve como objetivo a obtenção de Concentrados de Fibras Alimentares (CFAs) a partir de diferentes fontes agroindustrial e avaliar suas respectivas composição química e propriedades físico-químicas. O CFAs (mucilagem, pectina e βglicana + manana (βG+M)) foram obtidos a partir da linhaça, polpa cítrica e levedura de cervejaria (Saccharomyces cerevisiae), respectivamente, através de diferentes processos físico-químicos. A composição química revelou que o componente predominante em todos os CFAs foram fibra alimentar e a fração insolúvel. O CFA que obteve maior rendimento de extração foi βG+M (19.81% ± 8.54), seguido pela pectina (14.54% ± 2.72), e mucilagem (7.18% ± 1.54). A composição da mucilagem e pectina tiveram maior diversidade de monossacarídeos, uma vez que a βG+M consistiu principalmente de manose (74.5%) e glicose (24.3%). A pectina apresentou numericamente menor capacidade de hidratação que os demais CFAs. Para acapacidade de ligação ao óleo, todos os CFAs apresentaram valores similares. Neste estudo, os CFAs apresentaram características nutricional e tecnológica que indicaram potencial de aplicação das fontes agroindustrial como um prebiótico para a suplementação de peixes.Universidade Federal de Minas Gerais2020-04-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/1892610.35699/2447-6218.2020.18926Agrarian Sciences Journal; Vol. 12 (2020); 1-9Caderno de Ciências Agrárias; v. 12 (2020); 1-92447-62181984-6738reponame:Caderno de Ciências Agrárias (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGenghttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926/16543https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926/16544Copyright (c) 2020 Caderno de Ciências Agráriashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGoulart, Fernanda RodriguesDalcin, Marina OsmariLovatto, Naglezi de MenzesBender, Ana Betine Beutinger Silva, Leila Picolli daPretto, Alexandra 2022-07-28T12:29:40Zoai:periodicos.ufmg.br:article/18926Revistahttps://periodicos.ufmg.br/index.php/ccaufmgPUBhttps://periodicos.ufmg.br/index.php/ccaufmg/oaiccaufmg@ica.ufmg.br2447-62181984-6738opendoar:2022-07-28T12:29:40Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition Caracterização e propriedades físico químicas de concentrados de fibras alimentares como potenciais ingredientes prebióticos para uso na nutrição de peixes |
title |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
spellingShingle |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition Goulart, Fernanda Rodrigues β-glucana manana Alimentação de peixes Linhaça Mucilagem Pectina β-glucan mannan Fish feeds Linseed Mucilage Pectin |
title_short |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
title_full |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
title_fullStr |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
title_full_unstemmed |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
title_sort |
Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition |
author |
Goulart, Fernanda Rodrigues |
author_facet |
Goulart, Fernanda Rodrigues Dalcin, Marina Osmari Lovatto, Naglezi de Menzes Bender, Ana Betine Beutinger Silva, Leila Picolli da Pretto, Alexandra |
author_role |
author |
author2 |
Dalcin, Marina Osmari Lovatto, Naglezi de Menzes Bender, Ana Betine Beutinger Silva, Leila Picolli da Pretto, Alexandra |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Goulart, Fernanda Rodrigues Dalcin, Marina Osmari Lovatto, Naglezi de Menzes Bender, Ana Betine Beutinger Silva, Leila Picolli da Pretto, Alexandra |
dc.subject.por.fl_str_mv |
β-glucana manana Alimentação de peixes Linhaça Mucilagem Pectina β-glucan mannan Fish feeds Linseed Mucilage Pectin |
topic |
β-glucana manana Alimentação de peixes Linhaça Mucilagem Pectina β-glucan mannan Fish feeds Linseed Mucilage Pectin |
description |
Dietary fibers are formed by non-starch polysaccharides as cellulose, hemicellulose, pectins, gums, mucilages, β-glucans, among others. These constituents have prebiotic properties and are therefore not digested in the gut, reaching intact in the colon and altering the microflora of the colon. In developing, beneficial microflora produces physiological effects capable of improving the life of the host. Thus, the knowledge of the biological and functional properties of dietary fibers has led to the development of methods of obtaining these compounds for possible use in animal nutrition. Then, this study aimed to obtain dietary fiber concentrates (DFC) from different agro-industrial sources and evaluate their respective chemical composition and physicochemical properties. The DFC - mucilage, pectin, and βglucan + mannan (βG+M) were obtained from linseed, citrus pulp, and brewer’s yeast (Saccharomyces cerevisiae), respectively, through different physicochemical processes. The chemical composition revealed that the predominant component in all DFC were dietary fiber and the insoluble fraction. The DFC that obtained most extraction yield was βG+M (19.81% ± 8.54), followed by pectin (14.54% ± 2.72), and mucilage (7.18% ± 1.54). The mucilage and pectin composition have greater monosaccharide diversity since the βG+M consisted primarily of mannose (74.5%) and glucose (24.3%). The pectin showed numerically lower hydration capacity than the other DFC. For the oil binding ability, all DFC had similar values. In this study, the DFC presented nutritional and technological characteristics that indicate potential application of the agro-industrial sources as a prebiotic for fish supplementation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926 10.35699/2447-6218.2020.18926 |
url |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926 |
identifier_str_mv |
10.35699/2447-6218.2020.18926 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926/16543 https://periodicos.ufmg.br/index.php/ccaufmg/article/view/18926/16544 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Caderno de Ciências Agrárias https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Caderno de Ciências Agrárias https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
dc.source.none.fl_str_mv |
Agrarian Sciences Journal; Vol. 12 (2020); 1-9 Caderno de Ciências Agrárias; v. 12 (2020); 1-9 2447-6218 1984-6738 reponame:Caderno de Ciências Agrárias (Online) instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Caderno de Ciências Agrárias (Online) |
collection |
Caderno de Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
ccaufmg@ica.ufmg.br |
_version_ |
1797042443563040768 |