Nonlinear regression analysis of length growth in cultured rainbow trout

Detalhes bibliográficos
Autor(a) principal: Janampa-Sarmiento,P.C.
Data de Publicação: 2020
Outros Autores: Takata,R., Freitas,T.M., Pereira,M.M.B., Sá-Freire,L., Lugert,V., Sarturi,C., Pereira,M.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Arquivo brasileiro de medicina veterinária e zootecnia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778
Resumo: ABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout.
id UFMG-8_e19190030e5f50836a15d92645907eb2
oai_identifier_str oai:scielo:S0102-09352020000501778
network_acronym_str UFMG-8
network_name_str Arquivo brasileiro de medicina veterinária e zootecnia (Online)
repository_id_str
spelling Nonlinear regression analysis of length growth in cultured rainbow troutaquaculturelogistic modelOncorhynchus mykissnon-linear equationsABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout.Universidade Federal de Minas Gerais, Escola de Veterinária2020-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.72 n.5 2020reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG10.1590/1678-4162-11776info:eu-repo/semantics/openAccessJanampa-Sarmiento,P.C.Takata,R.Freitas,T.M.Pereira,M.M.B.Sá-Freire,L.Lugert,V.Sarturi,C.Pereira,M.M.eng2020-11-05T00:00:00Zoai:scielo:S0102-09352020000501778Revistahttps://www.scielo.br/j/abmvz/PUBhttps://old.scielo.br/oai/scielo-oai.phpjournal@vet.ufmg.br||abmvz.artigo@abmvz.org.br1678-41620102-0935opendoar:2020-11-05T00:00Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Nonlinear regression analysis of length growth in cultured rainbow trout
title Nonlinear regression analysis of length growth in cultured rainbow trout
spellingShingle Nonlinear regression analysis of length growth in cultured rainbow trout
Janampa-Sarmiento,P.C.
aquaculture
logistic model
Oncorhynchus mykiss
non-linear equations
title_short Nonlinear regression analysis of length growth in cultured rainbow trout
title_full Nonlinear regression analysis of length growth in cultured rainbow trout
title_fullStr Nonlinear regression analysis of length growth in cultured rainbow trout
title_full_unstemmed Nonlinear regression analysis of length growth in cultured rainbow trout
title_sort Nonlinear regression analysis of length growth in cultured rainbow trout
author Janampa-Sarmiento,P.C.
author_facet Janampa-Sarmiento,P.C.
Takata,R.
Freitas,T.M.
Pereira,M.M.B.
Sá-Freire,L.
Lugert,V.
Sarturi,C.
Pereira,M.M.
author_role author
author2 Takata,R.
Freitas,T.M.
Pereira,M.M.B.
Sá-Freire,L.
Lugert,V.
Sarturi,C.
Pereira,M.M.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Janampa-Sarmiento,P.C.
Takata,R.
Freitas,T.M.
Pereira,M.M.B.
Sá-Freire,L.
Lugert,V.
Sarturi,C.
Pereira,M.M.
dc.subject.por.fl_str_mv aquaculture
logistic model
Oncorhynchus mykiss
non-linear equations
topic aquaculture
logistic model
Oncorhynchus mykiss
non-linear equations
description ABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-4162-11776
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais, Escola de Veterinária
publisher.none.fl_str_mv Universidade Federal de Minas Gerais, Escola de Veterinária
dc.source.none.fl_str_mv Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.72 n.5 2020
reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Arquivo brasileiro de medicina veterinária e zootecnia (Online)
collection Arquivo brasileiro de medicina veterinária e zootecnia (Online)
repository.name.fl_str_mv Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv journal@vet.ufmg.br||abmvz.artigo@abmvz.org.br
_version_ 1750220894670684160