Nonlinear regression analysis of length growth in cultured rainbow trout
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778 |
Resumo: | ABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout. |
id |
UFMG-8_e19190030e5f50836a15d92645907eb2 |
---|---|
oai_identifier_str |
oai:scielo:S0102-09352020000501778 |
network_acronym_str |
UFMG-8 |
network_name_str |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
repository_id_str |
|
spelling |
Nonlinear regression analysis of length growth in cultured rainbow troutaquaculturelogistic modelOncorhynchus mykissnon-linear equationsABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout.Universidade Federal de Minas Gerais, Escola de Veterinária2020-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.72 n.5 2020reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG10.1590/1678-4162-11776info:eu-repo/semantics/openAccessJanampa-Sarmiento,P.C.Takata,R.Freitas,T.M.Pereira,M.M.B.Sá-Freire,L.Lugert,V.Sarturi,C.Pereira,M.M.eng2020-11-05T00:00:00Zoai:scielo:S0102-09352020000501778Revistahttps://www.scielo.br/j/abmvz/PUBhttps://old.scielo.br/oai/scielo-oai.phpjournal@vet.ufmg.br||abmvz.artigo@abmvz.org.br1678-41620102-0935opendoar:2020-11-05T00:00Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Nonlinear regression analysis of length growth in cultured rainbow trout |
title |
Nonlinear regression analysis of length growth in cultured rainbow trout |
spellingShingle |
Nonlinear regression analysis of length growth in cultured rainbow trout Janampa-Sarmiento,P.C. aquaculture logistic model Oncorhynchus mykiss non-linear equations |
title_short |
Nonlinear regression analysis of length growth in cultured rainbow trout |
title_full |
Nonlinear regression analysis of length growth in cultured rainbow trout |
title_fullStr |
Nonlinear regression analysis of length growth in cultured rainbow trout |
title_full_unstemmed |
Nonlinear regression analysis of length growth in cultured rainbow trout |
title_sort |
Nonlinear regression analysis of length growth in cultured rainbow trout |
author |
Janampa-Sarmiento,P.C. |
author_facet |
Janampa-Sarmiento,P.C. Takata,R. Freitas,T.M. Pereira,M.M.B. Sá-Freire,L. Lugert,V. Sarturi,C. Pereira,M.M. |
author_role |
author |
author2 |
Takata,R. Freitas,T.M. Pereira,M.M.B. Sá-Freire,L. Lugert,V. Sarturi,C. Pereira,M.M. |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Janampa-Sarmiento,P.C. Takata,R. Freitas,T.M. Pereira,M.M.B. Sá-Freire,L. Lugert,V. Sarturi,C. Pereira,M.M. |
dc.subject.por.fl_str_mv |
aquaculture logistic model Oncorhynchus mykiss non-linear equations |
topic |
aquaculture logistic model Oncorhynchus mykiss non-linear equations |
description |
ABSTRACT Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout (Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352020000501778 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4162-11776 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais, Escola de Veterinária |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais, Escola de Veterinária |
dc.source.none.fl_str_mv |
Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.72 n.5 2020 reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online) instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
collection |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
repository.name.fl_str_mv |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
journal@vet.ufmg.br||abmvz.artigo@abmvz.org.br |
_version_ |
1750220894670684160 |