Busca global em LEED usando algorítmo genético

Detalhes bibliográficos
Autor(a) principal: Mario Luiz Viana Alvarenga
Data de Publicação: 2004
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/ESCZ-692M97
Resumo: The atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization.
id UFMG_02b0fce0af1f60ac3f07c92314df7f27
oai_identifier_str oai:repositorio.ufmg.br:1843/ESCZ-692M97
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Busca global em LEED usando algorítmo genéticoLEEDDifração de Eletrons de Baixa Energia LEEDThe atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization.A determinação estrutural de superfícies sólidas via LEED (Difração de Elétrons Lentos) é um problema que requer uma busca extensiva no espaço de parâmetros que normalmente inclui parâmetros estruturais, as coordenados atômicas, e não estruturais, como a temperatura de Debye das primeiras camadas e o potencial óptico, de tal forma que as curvas I (V) teóricas possam se ajustar da melhor maneira possível às curvas experimentais. Por isso se faz necessário o uso de algoritmos que possam encontrar o mínimo global de maneira eficiente. Este trabalho apresenta os resultados da aplicação do Algoritmo Genético (GA) na otimização de parâmetros em uma análise LEED. Este é um método computacional baseado na evolução das espécies, que partindo de uma população inicial aleatória de soluções tais como: elitismo, recombinação e mutação. A qualidade de cada solução é avaliada através do código SATLEED (Symmetric Automated Tensor LEED), que calcula curvas I (V) teóricas através de estruturas geradas pelo GA e faz a comparação com as curvas experimentais. Esta comparação é quantificada através de um fator de correlação. O fator - R, que será tão menor quanto melhor a concordância entre as curvas. O GA usa este fator-R para associar aos indivíduos probabilidades de escolha para os processos de recombinação e clonagem. Resultados preliminares da aplicação do GA na determinação estrutural da face (111) do cristal de Ag - onde foram otimizados três parâmetros estruturais, além da temperatura de Debye da primeira camada atômica e o potencial óptico - mostraram boa ?performance? do método. Um segundo teste foi feito usando a face (110) do Cobre, onde quatro parâmetros estruturais, as temperaturas de Debye das duas primeiras camadas, e ainda, o potencial óptico foram otimizados. Finalmente, o código foi usado para o sistema Ni (111) (?3 X ?3)R 30º - Sn. Aqui o problema de otimização consiste de seis parâmetros estruturais, mais as temperaturas de Debye da primeira e segunda camadas e o potencial óptico, totalizando nove parâmetros. Mais uma vez, conseguimos excelente concordância entre os resultados obtidos através do GA e os resultados obtidos anteriormente através de outros métodos de minimização.Universidade Federal de Minas GeraisUFMGEdmar Avellar SoaresVagner Eustaquio de CarvalhoVagner Eustaquio de CarvalhoHelio ChachamLuiz Paulo Ribeiro VazRogerio Magalhaes PaniagoMario Luiz Viana Alvarenga2019-08-14T22:18:03Z2019-08-14T22:18:03Z2004-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/ESCZ-692M97info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T20:14:44Zoai:repositorio.ufmg.br:1843/ESCZ-692M97Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T20:14:44Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Busca global em LEED usando algorítmo genético
title Busca global em LEED usando algorítmo genético
spellingShingle Busca global em LEED usando algorítmo genético
Mario Luiz Viana Alvarenga
LEED
Difração de Eletrons de Baixa Energia LEED
title_short Busca global em LEED usando algorítmo genético
title_full Busca global em LEED usando algorítmo genético
title_fullStr Busca global em LEED usando algorítmo genético
title_full_unstemmed Busca global em LEED usando algorítmo genético
title_sort Busca global em LEED usando algorítmo genético
author Mario Luiz Viana Alvarenga
author_facet Mario Luiz Viana Alvarenga
author_role author
dc.contributor.none.fl_str_mv Edmar Avellar Soares
Vagner Eustaquio de Carvalho
Vagner Eustaquio de Carvalho
Helio Chacham
Luiz Paulo Ribeiro Vaz
Rogerio Magalhaes Paniago
dc.contributor.author.fl_str_mv Mario Luiz Viana Alvarenga
dc.subject.por.fl_str_mv LEED
Difração de Eletrons de Baixa Energia LEED
topic LEED
Difração de Eletrons de Baixa Energia LEED
description The atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization.
publishDate 2004
dc.date.none.fl_str_mv 2004-08-17
2019-08-14T22:18:03Z
2019-08-14T22:18:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/ESCZ-692M97
url http://hdl.handle.net/1843/ESCZ-692M97
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829912947884032