Busca global em LEED usando algorítmo genético
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | http://hdl.handle.net/1843/ESCZ-692M97 |
Resumo: | The atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization. |
id |
UFMG_02b0fce0af1f60ac3f07c92314df7f27 |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESCZ-692M97 |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Busca global em LEED usando algorítmo genéticoLEEDDifração de Eletrons de Baixa Energia LEEDThe atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization.A determinação estrutural de superfícies sólidas via LEED (Difração de Elétrons Lentos) é um problema que requer uma busca extensiva no espaço de parâmetros que normalmente inclui parâmetros estruturais, as coordenados atômicas, e não estruturais, como a temperatura de Debye das primeiras camadas e o potencial óptico, de tal forma que as curvas I (V) teóricas possam se ajustar da melhor maneira possível às curvas experimentais. Por isso se faz necessário o uso de algoritmos que possam encontrar o mínimo global de maneira eficiente. Este trabalho apresenta os resultados da aplicação do Algoritmo Genético (GA) na otimização de parâmetros em uma análise LEED. Este é um método computacional baseado na evolução das espécies, que partindo de uma população inicial aleatória de soluções tais como: elitismo, recombinação e mutação. A qualidade de cada solução é avaliada através do código SATLEED (Symmetric Automated Tensor LEED), que calcula curvas I (V) teóricas através de estruturas geradas pelo GA e faz a comparação com as curvas experimentais. Esta comparação é quantificada através de um fator de correlação. O fator - R, que será tão menor quanto melhor a concordância entre as curvas. O GA usa este fator-R para associar aos indivíduos probabilidades de escolha para os processos de recombinação e clonagem. Resultados preliminares da aplicação do GA na determinação estrutural da face (111) do cristal de Ag - onde foram otimizados três parâmetros estruturais, além da temperatura de Debye da primeira camada atômica e o potencial óptico - mostraram boa ?performance? do método. Um segundo teste foi feito usando a face (110) do Cobre, onde quatro parâmetros estruturais, as temperaturas de Debye das duas primeiras camadas, e ainda, o potencial óptico foram otimizados. Finalmente, o código foi usado para o sistema Ni (111) (?3 X ?3)R 30º - Sn. Aqui o problema de otimização consiste de seis parâmetros estruturais, mais as temperaturas de Debye da primeira e segunda camadas e o potencial óptico, totalizando nove parâmetros. Mais uma vez, conseguimos excelente concordância entre os resultados obtidos através do GA e os resultados obtidos anteriormente através de outros métodos de minimização.Universidade Federal de Minas GeraisUFMGEdmar Avellar SoaresVagner Eustaquio de CarvalhoVagner Eustaquio de CarvalhoHelio ChachamLuiz Paulo Ribeiro VazRogerio Magalhaes PaniagoMario Luiz Viana Alvarenga2019-08-14T22:18:03Z2019-08-14T22:18:03Z2004-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/ESCZ-692M97info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T20:14:44Zoai:repositorio.ufmg.br:1843/ESCZ-692M97Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T20:14:44Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Busca global em LEED usando algorítmo genético |
title |
Busca global em LEED usando algorítmo genético |
spellingShingle |
Busca global em LEED usando algorítmo genético Mario Luiz Viana Alvarenga LEED Difração de Eletrons de Baixa Energia LEED |
title_short |
Busca global em LEED usando algorítmo genético |
title_full |
Busca global em LEED usando algorítmo genético |
title_fullStr |
Busca global em LEED usando algorítmo genético |
title_full_unstemmed |
Busca global em LEED usando algorítmo genético |
title_sort |
Busca global em LEED usando algorítmo genético |
author |
Mario Luiz Viana Alvarenga |
author_facet |
Mario Luiz Viana Alvarenga |
author_role |
author |
dc.contributor.none.fl_str_mv |
Edmar Avellar Soares Vagner Eustaquio de Carvalho Vagner Eustaquio de Carvalho Helio Chacham Luiz Paulo Ribeiro Vaz Rogerio Magalhaes Paniago |
dc.contributor.author.fl_str_mv |
Mario Luiz Viana Alvarenga |
dc.subject.por.fl_str_mv |
LEED Difração de Eletrons de Baixa Energia LEED |
topic |
LEED Difração de Eletrons de Baixa Energia LEED |
description |
The atomic structure determination of solid surfaces by LEED (Low Energy Electron Diffraction) is a problem that requires an extensive search in the parameters space that usually includes structural parameters, the Debye temperatures of the first layers and the optical potential, in order to get the theoretical I(V ) curves well fit to the experimental one. Therefore the use of algorithms that can find the global minimum more efficiently is very useful in the LEED analysis. This work presents the results of an application of the Genetic Algorithm method (GA) in the parameters optimization in the LEED analysis. As this is a computational method based on the species evolution it is implemented in a such way that starting from a random chosen initial population of solutions, the GA algorithm search for the best solution through evolution devices such as cloning, recombination and mutation. In the particular case of surface structural determination each individual (solution) is a structural and non-structural parameters set, that are coded in binary strings (chromosomes). In the present implementation the reliability of the solution is obtained by the SATLEED (Symmetric Automated Tensor LEED) code, which calculates the I(V ) curves from structures generated by the GA and does the comparison with experimental I(V ) curves. This comparison is carried out by using the so-called reability factor (R-factor) that quantifies the agreement between curves. The GA uses the R-factor to calculate probabilities of cloning and recombination. Preliminary results of the application of the GA to the structural determination of (111) face of the Ag crystal - where the optimization of three structural parameters plus the Debye temperature of the first layer and the optical potential were performed - showed a good performance. In addition, a second test was carried out using the (110) face of Cu, where four structural parameters plus the Debye temperature of the two first layers and the optical potential were optimized. Finally, the code was used for the Ni(111)(p3 £ p3)R30o ¡ Sn system. Here the optimization problem considered the search on six structural parameters plus the Debye temperature of the first and second layers and the optical potential, a total of nine parameters. Again, we got very good agreement among the obtained through GA and the results obtainedpreviously through other methods of minimization. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-08-17 2019-08-14T22:18:03Z 2019-08-14T22:18:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/ESCZ-692M97 |
url |
http://hdl.handle.net/1843/ESCZ-692M97 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1816829912947884032 |