Techniques for Controlling Swarms of Robots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | http://hdl.handle.net/1843/GASP-7Y5F4W |
Resumo: | This thesis addresses the problem of controlling very large groups of robots, refereed as swarms. Scalable solutions in which there is no need for labelling the robots are proposed. All the robots run the same software and the success of the task execution does not depend on specific members of the group. Robustness to dynamic addition and deletion of agents is also an advantage of our approaches. In the first methodology, we model the swarm as a fluid immersed in a region where a field of external forces, which is free of local minima, is defined. In this case, the Smoothed Particle Hydrodynamics (SPH) method is applied to model the robotic fluid', more specifically, to model the interactions among the robots of the group. The Finite Element Method (FEM) is also used in this work to compute the fields that determine external forces. This approach is instantiated in a pattern generation task and also in a coverage task. In the second methodology, a problem of optimal environment coverage using robots equipped with sensors is addressed by means of tools from the Locational Optimization theory. Three important extensions of well-known results in the literature are presented: (i) sensors with different footprints, (ii) disk-shaped robots, and (iii) nonconvex polygonal environments. Both approaches are verified in simulations. The first technique is also implemented and tested in actual robots. |
id |
UFMG_146f1179c369fcf25f9e68b88db3b737 |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/GASP-7Y5F4W |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Techniques for Controlling Swarms of RobotscooperaçãorobóticaenxamesEngenharia elétricaThis thesis addresses the problem of controlling very large groups of robots, refereed as swarms. Scalable solutions in which there is no need for labelling the robots are proposed. All the robots run the same software and the success of the task execution does not depend on specific members of the group. Robustness to dynamic addition and deletion of agents is also an advantage of our approaches. In the first methodology, we model the swarm as a fluid immersed in a region where a field of external forces, which is free of local minima, is defined. In this case, the Smoothed Particle Hydrodynamics (SPH) method is applied to model the robotic fluid', more specifically, to model the interactions among the robots of the group. The Finite Element Method (FEM) is also used in this work to compute the fields that determine external forces. This approach is instantiated in a pattern generation task and also in a coverage task. In the second methodology, a problem of optimal environment coverage using robots equipped with sensors is addressed by means of tools from the Locational Optimization theory. Three important extensions of well-known results in the literature are presented: (i) sensors with different footprints, (ii) disk-shaped robots, and (iii) nonconvex polygonal environments. Both approaches are verified in simulations. The first technique is also implemented and tested in actual robots.Esta tese aborda o problema de controle de grandes grupos de robôs, referidos como enxames. São propostas soluções escaláveis as quais não necessitam da identificação única dos robôs. Todos os robôs executam o mesmo código e o sucesso na execução de uma tarefa não depende de membros específicos do grupo. Robustez à adição e remoção dinâmica de agentes também é uma vantagem das abordagens propostas. Na primeira metodologia, o enxame é modelado como um fluido imerso numa região onde um campo de forças externas livre de mínimos locais é definido. Neste caso, utiliza-se o método de Hidrodinâmica de Partículas Suavizadas (HPS) para modelar o fluido robótico'', mais especificamente, para modelar as interações entre robôs do grupo. O Método de Elementos Finitos (MEF) também é utilizado neste trabalho para calcular os campos vetoriais que determinam as forças externas. Esta abordagem é instanciada num problema de geração de padrões e também num problema de cobertura de ambientes. Na segunda metodologia, um problema de cobertura ótima de ambientes utilizando robôs equipados com sensores é tratado por meio de ferramentas provenientes da teoria de Otimização Locacional. São apresentadas três extensões importantes de resultados já conhecidos na literatura: (i) sensores com diferentes campos de visão, (ii) robôs com formato circular e (iii) ambientes poligonais não-convexos. Ambas metodologias são verificadas em simulações. A primeira metodologia é também implementada e testada em robôs reais.Universidade Federal de Minas GeraisUFMGRenato Cardoso MesquitaGuilherme Augusto Silva PereiraLuiz ChaimowiczElson Jose da SilvaGeovany Araújo BorgesMarco Henrique TerraLuciano Cunha de Araujo Pimenta2019-08-11T11:45:57Z2019-08-11T11:45:57Z2009-02-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/1843/GASP-7Y5F4Winfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T14:21:41Zoai:repositorio.ufmg.br:1843/GASP-7Y5F4WRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T14:21:41Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Techniques for Controlling Swarms of Robots |
title |
Techniques for Controlling Swarms of Robots |
spellingShingle |
Techniques for Controlling Swarms of Robots Luciano Cunha de Araujo Pimenta cooperação robótica enxames Engenharia elétrica |
title_short |
Techniques for Controlling Swarms of Robots |
title_full |
Techniques for Controlling Swarms of Robots |
title_fullStr |
Techniques for Controlling Swarms of Robots |
title_full_unstemmed |
Techniques for Controlling Swarms of Robots |
title_sort |
Techniques for Controlling Swarms of Robots |
author |
Luciano Cunha de Araujo Pimenta |
author_facet |
Luciano Cunha de Araujo Pimenta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Renato Cardoso Mesquita Guilherme Augusto Silva Pereira Luiz Chaimowicz Elson Jose da Silva Geovany Araújo Borges Marco Henrique Terra |
dc.contributor.author.fl_str_mv |
Luciano Cunha de Araujo Pimenta |
dc.subject.por.fl_str_mv |
cooperação robótica enxames Engenharia elétrica |
topic |
cooperação robótica enxames Engenharia elétrica |
description |
This thesis addresses the problem of controlling very large groups of robots, refereed as swarms. Scalable solutions in which there is no need for labelling the robots are proposed. All the robots run the same software and the success of the task execution does not depend on specific members of the group. Robustness to dynamic addition and deletion of agents is also an advantage of our approaches. In the first methodology, we model the swarm as a fluid immersed in a region where a field of external forces, which is free of local minima, is defined. In this case, the Smoothed Particle Hydrodynamics (SPH) method is applied to model the robotic fluid', more specifically, to model the interactions among the robots of the group. The Finite Element Method (FEM) is also used in this work to compute the fields that determine external forces. This approach is instantiated in a pattern generation task and also in a coverage task. In the second methodology, a problem of optimal environment coverage using robots equipped with sensors is addressed by means of tools from the Locational Optimization theory. Three important extensions of well-known results in the literature are presented: (i) sensors with different footprints, (ii) disk-shaped robots, and (iii) nonconvex polygonal environments. Both approaches are verified in simulations. The first technique is also implemented and tested in actual robots. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-02-02 2019-08-11T11:45:57Z 2019-08-11T11:45:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1843/GASP-7Y5F4W |
url |
http://hdl.handle.net/1843/GASP-7Y5F4W |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1816829892931616768 |