Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_1c5ea1532494313a3db346c3d3e4aa24
oai_identifier_str oai:repositorio.ufmg.br:1843/44765
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling 2022-08-31T14:07:08Z2022-08-31T14:07:08Z2017-11202177-3866http://hdl.handle.net/1843/44765Introdução O uso da Contabilidade como fonte de informação pode contribuir com explicações mais precisas sobre o valor das empresas do que apenas os preços. Para tanto, destaca-se a relevância da modelagem das informações obtidas por meio das demonstrações financeiras e dos modelos de avaliação. O modelo proposto por Ohlson (1995) se baseia na combinação dos lucros com o valor patrimonial contábil como base para a avaliação e traz outras perspectivas para a utilização do modelo de Avaliação pelo Lucro Residual. Problema de Pesquisa e Objetivo A indagação que norteia este estudo é: assumindo que a auto-regressão de primeira ordem capture toda a informação sobre os lucros anormais, qual a persistência e de que forma a inclusão de termos médias móveis como a variável de “outras informações” contribui para melhorar o Modelo de Ohlson? Seu objetivo é assim, identificar e analisar a persistência e de que forma a inclusão de termos médias móveis como a variável de “outras informações” conferem melhorias na utilização do Modelo de Ohlson na previsão de lucros anormais de empresas listadas na BM&FBovespa. Fundamentação Teórica Visando aprimorar ao Modelo de Ohlson (1995), Ota (2002) propôs uma nova perspectiva pela observação da correlação serial dos resíduos na estimação do MLI, utilizado como a terceira premissa no modelo, que estabelece a causação entre os lucros anormais e o valor da empresa. Este modelo compõe um processo estocástico para a previsão do comportamento dos lucros anormais futuros considerando uma auto-regressão de primeira ordem dos lucros anormais e “outras informações” ( ). Na falta de uma definição sobre a especificação de , diversas proxies têm sido utilizadas para se verificar o modelo. Metodologia Os dados utilizados são secundários, de periodicidade trimestral, primeiro trimestre de 2002 ao quatro trimestre de 2015, do tipo séries temporais, obtidos de demonstrações financeiras retiradas na base Economática, de uma amostra de 39 empresas listas no na BM&FBovespa. Foi utilizado o modelo ARIMA (Autoregressive Integrated Moving Average), com a estimação do modelo sazonal auto-regressivo, SAR(1)4, com dados trimestrais, que equivale à estimação do modelo AR(1) com dados anuais (HEIJ et al., 2004). Os cálculos e previsões foram realizados no software RStudio. Análise dos Resultados Os resultados desta pesquisa mostram que o MO ainda pode ser considerado na avaliação de empresas, pois depende de poucas variáveis para a obtenção do valor intrínseco, uma que representa o valor contábil e outra que representa a geração desse valor contábil. Outros fatores, como o risco corporativo, o risco de mercado e demais impactantes sobre a geração de valor, medido pelos lucros anormais, podem ser incorporados com relativa facilidade ao modelo através da taxa de desconto estimada, da variável informacional, , e de proxies em uma estrutura auto-regressiva e média móvel. Conclusão Esta pesquisa está em consonância com outros trabalhos que não perceberam uma melhora significativa do modelo com a inclusão apenas de defasagens auto-regressivas de ordens superiores, como observado em Dechow, Hutton e Sloan (1999) e em Ota (2002). No entanto, a utilização de uma estrutura auto-regressiva e média móvel flexibiliza o modelo informacional proposto por Ohlson (1995), em sua terceira premissa, e permite capturar as diferentes persistências das informações passadas e das “outras informações” sobre a geração de valor nas empresas que não puderam ser totalmente identificadas.porUniversidade Federal de Minas GeraisUFMGBrasilFCE - DEPARTAMENTO DE CIÊNCIAS ADMINISTRATIVASSEMEAD - Seminários em AdministraçãoAdministração de empresasLucrosLucros AnormaisModelo de OhlsonModelos ARIMAPrevisão de lucros anormais a partir da autocorrelação e das previsões de lucros com modelos arima: testando a terceira premissa do modelo de modelo de ohlsoninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://www.semead.com.brMarcos André NonakaBreno Valente Fontes AraújoMarcos Antônio de Camargosinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/44765/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALPrevisão de Lucros Anormais a Partir da Autocorrelação e das Previsões de Lucros com Modelos.pdfPrevisão de Lucros Anormais a Partir da Autocorrelação e das Previsões de Lucros com Modelos.pdfapplication/pdf340485https://repositorio.ufmg.br/bitstream/1843/44765/2/Previs%c3%a3o%20de%20Lucros%20Anormais%20a%20Partir%20da%20Autocorrela%c3%a7%c3%a3o%20e%20das%20Previs%c3%b5es%20de%20Lucros%20com%20Modelos.pdf8b7675c0cee35118040a838eb4941c53MD521843/447652022-08-31 11:07:08.607oai:repositorio.ufmg.br:1843/44765TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-08-31T14:07:08Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813547836687515648