Fixed-wing UAV motion planning and optimal control for curve tracking

Detalhes bibliográficos
Autor(a) principal: Leonardo Anício Alves Pereira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/35699
Resumo: As the use of unmanned aerial vehicles (UAVs) is increasing, new techniques for motion planning, navigation and control are being developed. Both military and civilian applications usually require a UAV to be able to estimate its own pose, process the information provided by the environment, and follow a given trajectory autonomously. Besides, some tasks such as surveillance, terrain mapping and convoy protection require long endurance. For those tasks, the use of a fixed-wing UAV is highly recommended due to its greater endurance when compared to rotary-wing UAVs. This work presents a strategy for solving the problem of guiding and controlling a UAV to follow a closed curve while avoiding dynamic obstacles. The proposed strategy can be divided into two parts. In a top layer, a vector field strategy is used which alternates between two forms: a vector field to converge to and circulate the target curve, and one to avoid obstacles along the UAV path. For a lower layer, a feedback linearization controller is proposed, in which a linear Model Predictive Control (MPC) is used as the auxiliary control law to make the UAV follow the references provided by the vector fields. Simulations using Matlab and the entire UAV model, with 6 degrees of freedom and 12 states, demonstrate the efficiency of the proposed strategy for different scenarios. Results obtained using an embedded computational system demonstrate that the proposed strategy is feasible to be implemented on a physical platform.
id UFMG_6847f1091a6c4f592dc4bb22ebe460cc
oai_identifier_str oai:repositorio.ufmg.br:1843/35699
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Luciano Cunha de Araújo Pimentahttp://lattes.cnpq.br/1331652492006790Guilherme Vianna RaffoVinícius Mariano GonçalvesArmando Alves NetoRubens Junqueira Magalhães Afonsohttp://lattes.cnpq.br/8119410040409696Leonardo Anício Alves Pereira2021-04-14T19:07:58Z2021-04-14T19:07:58Z2021-02-26http://hdl.handle.net/1843/35699As the use of unmanned aerial vehicles (UAVs) is increasing, new techniques for motion planning, navigation and control are being developed. Both military and civilian applications usually require a UAV to be able to estimate its own pose, process the information provided by the environment, and follow a given trajectory autonomously. Besides, some tasks such as surveillance, terrain mapping and convoy protection require long endurance. For those tasks, the use of a fixed-wing UAV is highly recommended due to its greater endurance when compared to rotary-wing UAVs. This work presents a strategy for solving the problem of guiding and controlling a UAV to follow a closed curve while avoiding dynamic obstacles. The proposed strategy can be divided into two parts. In a top layer, a vector field strategy is used which alternates between two forms: a vector field to converge to and circulate the target curve, and one to avoid obstacles along the UAV path. For a lower layer, a feedback linearization controller is proposed, in which a linear Model Predictive Control (MPC) is used as the auxiliary control law to make the UAV follow the references provided by the vector fields. Simulations using Matlab and the entire UAV model, with 6 degrees of freedom and 12 states, demonstrate the efficiency of the proposed strategy for different scenarios. Results obtained using an embedded computational system demonstrate that the proposed strategy is feasible to be implemented on a physical platform.À medida que o uso de veículos aéreos não tripulados (VANTs) vem aumentando, novas técnicas de planejamento de movimento, navegação e controle são desenvolvidas. Aplicações militares e civis geralmente requerem que um VANT seja capaz de estimar sua própria pose, processar as informações fornecidas pelo ambiente e seguir uma determinada trajetória de forma autônoma. Além disso, algumas tarefas como vigilância, mapeamento de terreno e proteção de comboio exigem uma longa vida útil em termos de consumo de energia. Nestas situações, o uso de um VANT de asa-fixa é altamente recomendado devido à sua maior autonomia quando comparado aos VANTs de asa rotativa. Este trabalho apresenta uma solução para o problema de guiar e controlar um VANT de asa-fixa para seguir uma curva fechada enquanto desvia de obstáculos dinâmicos. A estratégia proposta pode ser dividida em duas partes. Em uma camada superior é utilizada uma estratégia de campos vetoriais que alterna entre duas formas: um campo vetorial para convergir e circular a curva alvo, e um para desviar dos obstáculos no caminho do VANT. Para a camada inferior é proposto um controle de linearização por realimentação, onde a lei de controle auxiliar é projetada através de um MPC (Model Predictive Control) linear para fazer com o que o VANT siga as referências fornecidas pelos campos vetoriais. Simulações utilizando Matlab e o modelo completo do VANT, com 6 graus de liberdade e 12 estados, demonstram a eficiência da estratégia proposta para diferentes cenários. Resultados obtidos utilizando um sistema computacional embarcado demonstram que a estratégia proposta é factível de implementação em uma plataforma física.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)FAPESP - Fundação de Amparo à Pesquisa do Estado de São PauloengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia ElétricaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICAhttp://creativecommons.org/licenses/by/3.0/pt/info:eu-repo/semantics/openAccessEngenharia elétricaAeronave não tripuladaControle preditivoCampos vetoriaisFixed-wing UAVModel predictive controlVector fieldsMotion planningCurve trackingObstacle avoidanceFixed-wing UAV motion planning and optimal control for curve trackingPlanejamento de movimento e controle de ótimo de VANT de asa-fixa para rastreamento de curvainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALDissertacaCorrigidavFinalPDFA.pdfDissertacaCorrigidavFinalPDFA.pdfapplication/pdf18387367https://repositorio.ufmg.br/bitstream/1843/35699/2/DissertacaCorrigidavFinalPDFA.pdf47c7f8f223bf42fa21c0aa602ff50124MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufmg.br/bitstream/1843/35699/3/license_rdff9944a358a0c32770bd9bed185bb5395MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82119https://repositorio.ufmg.br/bitstream/1843/35699/4/license.txt34badce4be7e31e3adb4575ae96af679MD541843/356992021-04-14 16:07:58.239oai:repositorio.ufmg.br:1843/35699TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KCg==Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-04-14T19:07:58Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Fixed-wing UAV motion planning and optimal control for curve tracking
dc.title.alternative.pt_BR.fl_str_mv Planejamento de movimento e controle de ótimo de VANT de asa-fixa para rastreamento de curva
title Fixed-wing UAV motion planning and optimal control for curve tracking
spellingShingle Fixed-wing UAV motion planning and optimal control for curve tracking
Leonardo Anício Alves Pereira
Fixed-wing UAV
Model predictive control
Vector fields
Motion planning
Curve tracking
Obstacle avoidance
Engenharia elétrica
Aeronave não tripulada
Controle preditivo
Campos vetoriais
title_short Fixed-wing UAV motion planning and optimal control for curve tracking
title_full Fixed-wing UAV motion planning and optimal control for curve tracking
title_fullStr Fixed-wing UAV motion planning and optimal control for curve tracking
title_full_unstemmed Fixed-wing UAV motion planning and optimal control for curve tracking
title_sort Fixed-wing UAV motion planning and optimal control for curve tracking
author Leonardo Anício Alves Pereira
author_facet Leonardo Anício Alves Pereira
author_role author
dc.contributor.advisor1.fl_str_mv Luciano Cunha de Araújo Pimenta
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1331652492006790
dc.contributor.advisor-co1.fl_str_mv Guilherme Vianna Raffo
dc.contributor.referee1.fl_str_mv Vinícius Mariano Gonçalves
dc.contributor.referee2.fl_str_mv Armando Alves Neto
dc.contributor.referee3.fl_str_mv Rubens Junqueira Magalhães Afonso
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8119410040409696
dc.contributor.author.fl_str_mv Leonardo Anício Alves Pereira
contributor_str_mv Luciano Cunha de Araújo Pimenta
Guilherme Vianna Raffo
Vinícius Mariano Gonçalves
Armando Alves Neto
Rubens Junqueira Magalhães Afonso
dc.subject.por.fl_str_mv Fixed-wing UAV
Model predictive control
Vector fields
Motion planning
Curve tracking
Obstacle avoidance
topic Fixed-wing UAV
Model predictive control
Vector fields
Motion planning
Curve tracking
Obstacle avoidance
Engenharia elétrica
Aeronave não tripulada
Controle preditivo
Campos vetoriais
dc.subject.other.pt_BR.fl_str_mv Engenharia elétrica
Aeronave não tripulada
Controle preditivo
Campos vetoriais
description As the use of unmanned aerial vehicles (UAVs) is increasing, new techniques for motion planning, navigation and control are being developed. Both military and civilian applications usually require a UAV to be able to estimate its own pose, process the information provided by the environment, and follow a given trajectory autonomously. Besides, some tasks such as surveillance, terrain mapping and convoy protection require long endurance. For those tasks, the use of a fixed-wing UAV is highly recommended due to its greater endurance when compared to rotary-wing UAVs. This work presents a strategy for solving the problem of guiding and controlling a UAV to follow a closed curve while avoiding dynamic obstacles. The proposed strategy can be divided into two parts. In a top layer, a vector field strategy is used which alternates between two forms: a vector field to converge to and circulate the target curve, and one to avoid obstacles along the UAV path. For a lower layer, a feedback linearization controller is proposed, in which a linear Model Predictive Control (MPC) is used as the auxiliary control law to make the UAV follow the references provided by the vector fields. Simulations using Matlab and the entire UAV model, with 6 degrees of freedom and 12 states, demonstrate the efficiency of the proposed strategy for different scenarios. Results obtained using an embedded computational system demonstrate that the proposed strategy is feasible to be implemented on a physical platform.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-04-14T19:07:58Z
dc.date.available.fl_str_mv 2021-04-14T19:07:58Z
dc.date.issued.fl_str_mv 2021-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/35699
url http://hdl.handle.net/1843/35699
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/35699/2/DissertacaCorrigidavFinalPDFA.pdf
https://repositorio.ufmg.br/bitstream/1843/35699/3/license_rdf
https://repositorio.ufmg.br/bitstream/1843/35699/4/license.txt
bitstream.checksum.fl_str_mv 47c7f8f223bf42fa21c0aa602ff50124
f9944a358a0c32770bd9bed185bb5395
34badce4be7e31e3adb4575ae96af679
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589183776751616