Learning representations for classification problems in reproducing kernel Hilbert spaces

Detalhes bibliográficos
Autor(a) principal: Murilo Vale Ferreira Menezes
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/37927
https://orcid.org/0000-0002-7675-6432
Resumo: The performance of a machine learning method, regardless of the task it is trying to solve, is dependent on the quality of the representations it receives. Not surprisingly, there is a wide class of methods that aim to leverage statistical properties of a dataset, either with raw or handcrafted features, to build more useful representations, from Principal Component Analysis to recent deep learning techniques. Kernel methods are a very powerful family of models, which have the ability to map the input data into a space where otherwise hard tasks become easier to solve, such as linear classification. These methods have the ability to express their learning process only in terms of kernels, which are similarity functions between samples and can be interpreted as inner products in this mapped space, dismissing the need to explicitly map the data. However, these kernel functions often have a set of parameters that have to be chosen according to each task and have a great influence on the mapping, and, therefore, on the final task. This work proposes two objective functions which can be used to learn these kernel parameters and achieve good classification results. Experiments with Gaussian, Laplacian, and sigmoid kernels are conducted. An interpretation of neural networks inside the kernel framework is also proposed, enabling these networks to be trained to learn representations using the proposed functions. Based on empirical results and the analysis of each kernel function used in the experiments, properties of the proposed functions are discussed, along with how they can successfully be used in practice.
id UFMG_72a22d72c5396f3f9ffedc1c72970cb4
oai_identifier_str oai:repositorio.ufmg.br:1843/37927
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Antônio de Pádua Bragahttp://lattes.cnpq.br/1130012055294645Luiz Carlos Bambirra TorresCristiano Leite de CastroSílvia Grasiella Moreira Almeidahttp://lattes.cnpq.br/7865037461061309Murilo Vale Ferreira Menezes2021-09-06T18:57:29Z2021-09-06T18:57:29Z2020-10-26http://hdl.handle.net/1843/37927https://orcid.org/0000-0002-7675-6432The performance of a machine learning method, regardless of the task it is trying to solve, is dependent on the quality of the representations it receives. Not surprisingly, there is a wide class of methods that aim to leverage statistical properties of a dataset, either with raw or handcrafted features, to build more useful representations, from Principal Component Analysis to recent deep learning techniques. Kernel methods are a very powerful family of models, which have the ability to map the input data into a space where otherwise hard tasks become easier to solve, such as linear classification. These methods have the ability to express their learning process only in terms of kernels, which are similarity functions between samples and can be interpreted as inner products in this mapped space, dismissing the need to explicitly map the data. However, these kernel functions often have a set of parameters that have to be chosen according to each task and have a great influence on the mapping, and, therefore, on the final task. This work proposes two objective functions which can be used to learn these kernel parameters and achieve good classification results. Experiments with Gaussian, Laplacian, and sigmoid kernels are conducted. An interpretation of neural networks inside the kernel framework is also proposed, enabling these networks to be trained to learn representations using the proposed functions. Based on empirical results and the analysis of each kernel function used in the experiments, properties of the proposed functions are discussed, along with how they can successfully be used in practice.O desempenho de um modelo de aprendizado de máquina, independentemente da tarefa, depende da qualidade das representações que o fornecemos. Há uma ampla classe de métodos que utilizam propriedades estatísticas de um conjunto de dados para aprender representações, da Análise de Componentes Principais (PCA) a técnicas de aprendizado profundo. Métodos de kernel são uma família poderosa de modelos que têm a habilidade de mapear os dados para um espaço onde tarefas como classificação linear se tornam mais fáceis de serem resolvidas. Estes métodos têm a habilidade de expressar seu processo de aprendizado apenas em termos de funções de kernel, que são medidas de similaridade entre amostras e podem ser interpretadas como produtos internos neste espaço mapeado, não havendo necessidade do mapeamento explícito. Contudo, estas funções de kernel tipicamente têm um conjunto de parâmetros que devem ser ajustados de acordo com cada tarefa e têm grande influência no mapeamento, e, portanto, na tarefa final. Este trabalho propõe duas funções objetivo com as quais podemos aprender estes parâmetros e atingir bons resultados em problemas de classificação. Conduzimos experimentos com kernels Gaussianos, Laplacianos e sigmoidais. Além disso, uma interpretação de redes neurais dentro do arcabouço de kernels é proposta, mostrando que estas redes podem ser treinadas para aprender representações de acordo com as funções propostas. Com base em resultados empíricos e na análise das funções de kernel usadas, discutimos as propriedades das funções propostas e como usá-las na prática.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia ElétricaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICAEngenharia elétricaClassificaçãoKernel, Funções deKernel methodsRepresentation learningClassificationLearning representations for classification problems in reproducing kernel Hilbert spacesAprendendo representações para problemas de classificação em espaços de Hilbert do kernel reprodutivoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALLearning representations for classification problems in reproducing kernel Hilbert spaces.pdfLearning representations for classification problems in reproducing kernel Hilbert spaces.pdfapplication/pdf5869727https://repositorio.ufmg.br/bitstream/1843/37927/3/Learning%20representations%20for%20classification%20problems%20in%20reproducing%20kernel%20Hilbert%20spaces.pdfd485151d04500437368ba15d4d1d038aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/37927/4/license.txtcda590c95a0b51b4d15f60c9642ca272MD541843/379272021-09-06 15:57:29.376oai:repositorio.ufmg.br:1843/37927TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2021-09-06T18:57:29Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Learning representations for classification problems in reproducing kernel Hilbert spaces
dc.title.alternative.pt_BR.fl_str_mv Aprendendo representações para problemas de classificação em espaços de Hilbert do kernel reprodutivo
title Learning representations for classification problems in reproducing kernel Hilbert spaces
spellingShingle Learning representations for classification problems in reproducing kernel Hilbert spaces
Murilo Vale Ferreira Menezes
Kernel methods
Representation learning
Classification
Engenharia elétrica
Classificação
Kernel, Funções de
title_short Learning representations for classification problems in reproducing kernel Hilbert spaces
title_full Learning representations for classification problems in reproducing kernel Hilbert spaces
title_fullStr Learning representations for classification problems in reproducing kernel Hilbert spaces
title_full_unstemmed Learning representations for classification problems in reproducing kernel Hilbert spaces
title_sort Learning representations for classification problems in reproducing kernel Hilbert spaces
author Murilo Vale Ferreira Menezes
author_facet Murilo Vale Ferreira Menezes
author_role author
dc.contributor.advisor1.fl_str_mv Antônio de Pádua Braga
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1130012055294645
dc.contributor.advisor-co1.fl_str_mv Luiz Carlos Bambirra Torres
dc.contributor.referee1.fl_str_mv Cristiano Leite de Castro
dc.contributor.referee2.fl_str_mv Sílvia Grasiella Moreira Almeida
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7865037461061309
dc.contributor.author.fl_str_mv Murilo Vale Ferreira Menezes
contributor_str_mv Antônio de Pádua Braga
Luiz Carlos Bambirra Torres
Cristiano Leite de Castro
Sílvia Grasiella Moreira Almeida
dc.subject.por.fl_str_mv Kernel methods
Representation learning
Classification
topic Kernel methods
Representation learning
Classification
Engenharia elétrica
Classificação
Kernel, Funções de
dc.subject.other.pt_BR.fl_str_mv Engenharia elétrica
Classificação
Kernel, Funções de
description The performance of a machine learning method, regardless of the task it is trying to solve, is dependent on the quality of the representations it receives. Not surprisingly, there is a wide class of methods that aim to leverage statistical properties of a dataset, either with raw or handcrafted features, to build more useful representations, from Principal Component Analysis to recent deep learning techniques. Kernel methods are a very powerful family of models, which have the ability to map the input data into a space where otherwise hard tasks become easier to solve, such as linear classification. These methods have the ability to express their learning process only in terms of kernels, which are similarity functions between samples and can be interpreted as inner products in this mapped space, dismissing the need to explicitly map the data. However, these kernel functions often have a set of parameters that have to be chosen according to each task and have a great influence on the mapping, and, therefore, on the final task. This work proposes two objective functions which can be used to learn these kernel parameters and achieve good classification results. Experiments with Gaussian, Laplacian, and sigmoid kernels are conducted. An interpretation of neural networks inside the kernel framework is also proposed, enabling these networks to be trained to learn representations using the proposed functions. Based on empirical results and the analysis of each kernel function used in the experiments, properties of the proposed functions are discussed, along with how they can successfully be used in practice.
publishDate 2020
dc.date.issued.fl_str_mv 2020-10-26
dc.date.accessioned.fl_str_mv 2021-09-06T18:57:29Z
dc.date.available.fl_str_mv 2021-09-06T18:57:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/37927
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0002-7675-6432
url http://hdl.handle.net/1843/37927
https://orcid.org/0000-0002-7675-6432
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/37927/3/Learning%20representations%20for%20classification%20problems%20in%20reproducing%20kernel%20Hilbert%20spaces.pdf
https://repositorio.ufmg.br/bitstream/1843/37927/4/license.txt
bitstream.checksum.fl_str_mv d485151d04500437368ba15d4d1d038a
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589280274055168