DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems

Detalhes bibliográficos
Autor(a) principal: Renan Albuquerque Marks
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/62057
https://orcid.org/0000-0001-8239-8320
Resumo: There was a time when the evolution of computer systems technology was fast and steady. The development rate of new miniaturization techniques was high, meaning that smaller and more efficient fabrication methods became available and employed to develop new integrated circuits after a few months. Although this was true in the past decades, this is no longer true due to physics limits. Each new generation of devices faces transistor miniaturization challenges mainly because of power consumption and heat dissipation due to the nature of quantum physics at this scale. As artificial intelligence becomes more prevalent due to the need to process an enormous amount of data in parallel and fast, the hardware will be a bottleneck. Several solutions to this hardware problem are being proposed and tested. Some of them involve trying new paradigms to build computer systems beyond silicon, such as using light or organic molecules as a substrate to carry out the computation. One of the alternatives is using DNA as ``wet'' hardware to complement the traditional silicon computers, accelerating some specific computations in vitro or in vivo. DNA's massively parallel processing capabilities and low power consumption make it the perfect alternative to implementing new medical applications, ranging from diagnostic of diseases to new drugs to treat various illnesses. This thesis proposes that DNA Strand Displacement (DSD) technology can be a hardware substrate for developing digital, analog, and machine-learning modular molecular circuits. Thus, to achieve this goal, this thesis will present the contribution of new Computer Aided Design (CAD) tools developed that support the modularization, composition, design, simulation, and validation of molecular circuits based on DSD.
id UFMG_bb4d24f6ec6e236947b1180d8a757f9e
oai_identifier_str oai:repositorio.ufmg.br:1843/62057
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Omar Paranaiba Vilela Netohttp://lattes.cnpq.br/6799776599317117Omar Paranaiba Vilela NetoGisele Lobo PappaDaniel Fernandes MacedoRicardo dos Santos FerreiraNalvo Franco de Almeida JúniorMarcos Viero Guterreshttp://lattes.cnpq.br/0157902406122102Renan Albuquerque Marks2023-12-18T18:08:48Z2023-12-18T18:08:48Z2023-10-06http://hdl.handle.net/1843/62057https://orcid.org/0000-0001-8239-8320There was a time when the evolution of computer systems technology was fast and steady. The development rate of new miniaturization techniques was high, meaning that smaller and more efficient fabrication methods became available and employed to develop new integrated circuits after a few months. Although this was true in the past decades, this is no longer true due to physics limits. Each new generation of devices faces transistor miniaturization challenges mainly because of power consumption and heat dissipation due to the nature of quantum physics at this scale. As artificial intelligence becomes more prevalent due to the need to process an enormous amount of data in parallel and fast, the hardware will be a bottleneck. Several solutions to this hardware problem are being proposed and tested. Some of them involve trying new paradigms to build computer systems beyond silicon, such as using light or organic molecules as a substrate to carry out the computation. One of the alternatives is using DNA as ``wet'' hardware to complement the traditional silicon computers, accelerating some specific computations in vitro or in vivo. DNA's massively parallel processing capabilities and low power consumption make it the perfect alternative to implementing new medical applications, ranging from diagnostic of diseases to new drugs to treat various illnesses. This thesis proposes that DNA Strand Displacement (DSD) technology can be a hardware substrate for developing digital, analog, and machine-learning modular molecular circuits. Thus, to achieve this goal, this thesis will present the contribution of new Computer Aided Design (CAD) tools developed that support the modularization, composition, design, simulation, and validation of molecular circuits based on DSD.Houve um tempo em que a evolução tecnológica de sistemas computacionais era constante e célere. A alta velocidade no desenvolvimento de novas técnicas de miniaturização significava que métodos de fabricação menores e mais eficientes ficavam disponíveis após alguns meses de pesquisa e eram empregados no desenvolvimento de novos circuitos integrados. Embora isso fosse verdade nas últimas décadas, este cenário mudou recentemente devido aos limites impostos pela física. Cada nova geração de dispositivos enfrenta novos desafios de miniaturização dos transistores, principalmente por causa do consumo de energia e dissipação de calor devido à natureza da física quântica nesta escala. À medida que a inteligência artificial se torna mais prevalente devido à necessidade de processar uma enorme quantidade de dados rapidamente em paralelo, o hardware será um gargalo. Várias soluções para este problema de hardware estão sendo propostas e testadas. Algumas delas envolvem o uso de novos paradigmas para construir sistemas computacionais além do silício, tais como o uso de luz ou moléculas orgânicas como substrato para realizar a computação. Uma das alternativas é usar o DNA como hardware "úmido" como um complemento aos computadores tradicionais de silício, acelerando alguns cálculos específicos in vitro ou in vivo. As capacidades de processamento massivamente paralelo e baixo consumo de energia do DNA o tornam a alternativa perfeita para a implementação de novas aplicações biológicas, que vão desde o diagnóstico de doenças a novos medicamentos para o tratamento de várias doenças. Esta tese propõe que a tecnologia de deslocamento de fitas de DNA (DNA Strand Displacement, DSD) é passível de ser utilizada como um substrado de hardware para desenvolvimento de circuitos moleculares modulares digitais, analógicos e de aprendizado de máquina. Assim, para atingir este objetivo, esta tese apresentará a contribuição de novas ferramentas de Computer Aided Design (CAD) desenvolvidas que amparam a modularização, composição, projeto, simulação e validação dos circuitos moleculares baseados em DSD.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOhttp://creativecommons.org/licenses/by-nc-sa/3.0/pt/info:eu-repo/semantics/openAccessComputação – TesesNanocomputação – TesesComputação em DNA – TesesNanocomputaçãoComputação MolecularCircuitos em DNADNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systemsDeslocamento de fitas de DNA (DSD) como substrato de hardware para sistemas digitais, analógicos e de aprendizado de máquinaDesplazamiento de hebras de ADN (DSD) como sustrato de hardware para sistemas digitales, analógicos y de aprendizaje automáticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALtese_renan_final.pdftese_renan_final.pdfapplication/pdf2884831https://repositorio.ufmg.br/bitstream/1843/62057/1/tese_renan_final.pdfc8e5ea9ceb25b3707cfbc70a9c38eb32MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ufmg.br/bitstream/1843/62057/2/license_rdfd434b2e45b27c6ef831461f4412a9d4eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/62057/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/620572023-12-18 15:08:49.16oai:repositorio.ufmg.br:1843/62057TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-12-18T18:08:49Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
dc.title.alternative.pt_BR.fl_str_mv Deslocamento de fitas de DNA (DSD) como substrato de hardware para sistemas digitais, analógicos e de aprendizado de máquina
Desplazamiento de hebras de ADN (DSD) como sustrato de hardware para sistemas digitales, analógicos y de aprendizaje automático
title DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
spellingShingle DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
Renan Albuquerque Marks
Nanocomputação
Computação Molecular
Circuitos em DNA
Computação – Teses
Nanocomputação – Teses
Computação em DNA – Teses
title_short DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
title_full DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
title_fullStr DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
title_full_unstemmed DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
title_sort DNA Strand Displacement (DSD) as a hardware substrate for digital, analog and machine learning systems
author Renan Albuquerque Marks
author_facet Renan Albuquerque Marks
author_role author
dc.contributor.advisor1.fl_str_mv Omar Paranaiba Vilela Neto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6799776599317117
dc.contributor.referee1.fl_str_mv Omar Paranaiba Vilela Neto
dc.contributor.referee2.fl_str_mv Gisele Lobo Pappa
dc.contributor.referee3.fl_str_mv Daniel Fernandes Macedo
dc.contributor.referee4.fl_str_mv Ricardo dos Santos Ferreira
dc.contributor.referee5.fl_str_mv Nalvo Franco de Almeida Júnior
Marcos Viero Guterres
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0157902406122102
dc.contributor.author.fl_str_mv Renan Albuquerque Marks
contributor_str_mv Omar Paranaiba Vilela Neto
Omar Paranaiba Vilela Neto
Gisele Lobo Pappa
Daniel Fernandes Macedo
Ricardo dos Santos Ferreira
Nalvo Franco de Almeida Júnior
Marcos Viero Guterres
dc.subject.por.fl_str_mv Nanocomputação
Computação Molecular
Circuitos em DNA
topic Nanocomputação
Computação Molecular
Circuitos em DNA
Computação – Teses
Nanocomputação – Teses
Computação em DNA – Teses
dc.subject.other.pt_BR.fl_str_mv Computação – Teses
Nanocomputação – Teses
Computação em DNA – Teses
description There was a time when the evolution of computer systems technology was fast and steady. The development rate of new miniaturization techniques was high, meaning that smaller and more efficient fabrication methods became available and employed to develop new integrated circuits after a few months. Although this was true in the past decades, this is no longer true due to physics limits. Each new generation of devices faces transistor miniaturization challenges mainly because of power consumption and heat dissipation due to the nature of quantum physics at this scale. As artificial intelligence becomes more prevalent due to the need to process an enormous amount of data in parallel and fast, the hardware will be a bottleneck. Several solutions to this hardware problem are being proposed and tested. Some of them involve trying new paradigms to build computer systems beyond silicon, such as using light or organic molecules as a substrate to carry out the computation. One of the alternatives is using DNA as ``wet'' hardware to complement the traditional silicon computers, accelerating some specific computations in vitro or in vivo. DNA's massively parallel processing capabilities and low power consumption make it the perfect alternative to implementing new medical applications, ranging from diagnostic of diseases to new drugs to treat various illnesses. This thesis proposes that DNA Strand Displacement (DSD) technology can be a hardware substrate for developing digital, analog, and machine-learning modular molecular circuits. Thus, to achieve this goal, this thesis will present the contribution of new Computer Aided Design (CAD) tools developed that support the modularization, composition, design, simulation, and validation of molecular circuits based on DSD.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-18T18:08:48Z
dc.date.available.fl_str_mv 2023-12-18T18:08:48Z
dc.date.issued.fl_str_mv 2023-10-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/62057
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0001-8239-8320
url http://hdl.handle.net/1843/62057
https://orcid.org/0000-0001-8239-8320
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/62057/1/tese_renan_final.pdf
https://repositorio.ufmg.br/bitstream/1843/62057/2/license_rdf
https://repositorio.ufmg.br/bitstream/1843/62057/3/license.txt
bitstream.checksum.fl_str_mv c8e5ea9ceb25b3707cfbc70a9c38eb32
d434b2e45b27c6ef831461f4412a9d4e
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589239537926144