Definição de parâmetros de RBF utilizando grafo de Gabriel

Detalhes bibliográficos
Autor(a) principal: Marcelo de Oliveira Queiroz
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/BUOS-APWMT3
Resumo: The use of RBF (Radial Basis Function) in sample classication problems has been a much discussed approach in the literature. Its diverse applications allow you to deal with problems of dierent complexities. Among the most applied radial functions Gaussian is considered one of the most ecient for its simplicity of conguration. However one of the challenges in using this type of function is to denethe parameters c and sigma, center and radius respectively, suitableto avoid sub or oversize in the solution of the problem. This workproposes a methodology based on Gabriel's graph and the theory ofthe dominant sets to nd these parameters for a given set of samples,without the necessity of arbitration. In a second step, the gaussiansfound in an articial neural network architecture are applied in orderto classify these samples. In a third step, we compare the resultsfound with those of classical classiers known in the literature. Oncethese results are analyzed, the particularities of each problem studiedand their inuences on the metrics of the proposed methodology areanalyzed, which may create a need to adapt them to the treatment ofsome of these particularities. Among the particularities studied arethe overlap of classied samples, dened as noise, and the unbalanceof samples, very common in real problems. In order to deal with theoverlap a ltering process was proposed that aims to improve the accuracy in the classication. For the unbalance the technique was usedin the technique of undersampling which seeks to improve accuracyas described in the literature. In order to re-embroider a problem ofclassication of dispatch of plants, it was proposed to use the methodin a six-bar system with two thermoelectric plants, one hydroelectricplant and two wind farms classied as distributed generation, to validateIts application in a problem that is very current, ie, which typeof plant should be dispatched depending on the climatic conditions.Finally, the proposed method aims to treat the described points in orderto obtain the best possible results for each problem, without theneed to adjust Gaussian parameters a priori, which allows its application, in general, to be simple to congure, not needing deep technical knowledge for its use.
id UFMG_c628a20bc42e4296d86441bda2e173b6
oai_identifier_str oai:repositorio.ufmg.br:1843/BUOS-APWMT3
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Definição de parâmetros de RBF utilizando grafo de GabrielEngenharia ElétricaEngenharia elétricaThe use of RBF (Radial Basis Function) in sample classication problems has been a much discussed approach in the literature. Its diverse applications allow you to deal with problems of dierent complexities. Among the most applied radial functions Gaussian is considered one of the most ecient for its simplicity of conguration. However one of the challenges in using this type of function is to denethe parameters c and sigma, center and radius respectively, suitableto avoid sub or oversize in the solution of the problem. This workproposes a methodology based on Gabriel's graph and the theory ofthe dominant sets to nd these parameters for a given set of samples,without the necessity of arbitration. In a second step, the gaussiansfound in an articial neural network architecture are applied in orderto classify these samples. In a third step, we compare the resultsfound with those of classical classiers known in the literature. Oncethese results are analyzed, the particularities of each problem studiedand their inuences on the metrics of the proposed methodology areanalyzed, which may create a need to adapt them to the treatment ofsome of these particularities. Among the particularities studied arethe overlap of classied samples, dened as noise, and the unbalanceof samples, very common in real problems. In order to deal with theoverlap a ltering process was proposed that aims to improve the accuracy in the classication. For the unbalance the technique was usedin the technique of undersampling which seeks to improve accuracyas described in the literature. In order to re-embroider a problem ofclassication of dispatch of plants, it was proposed to use the methodin a six-bar system with two thermoelectric plants, one hydroelectricplant and two wind farms classied as distributed generation, to validateIts application in a problem that is very current, ie, which typeof plant should be dispatched depending on the climatic conditions.Finally, the proposed method aims to treat the described points in orderto obtain the best possible results for each problem, without theneed to adjust Gaussian parameters a priori, which allows its application, in general, to be simple to congure, not needing deep technical knowledge for its use.O uso de RBF (Radial Basis Function) em problemas de classicaçãode amostras tem sido uma abordagem muito discutida na literatura.Suas diversas aplicações permitem tratar problemas de complexidadesdiferentes. Dentre as funções radiais mais aplicadas a gaussianaé considerada uma das mais ecientes pela sua simplicidade de con-guração. No entanto um dos desaos no uso deste tipo de função édenir os parâmetros c e , centro e raio respectivamente, adequadospara evitar sub ou superdimensionamento na solução do problema.Este trabalho propõe uma metodologia baseada no grafo de Gabriel ena teoria dos conjuntos dominantes para encontrar estes parâmetrospara um dado conjunto de amostras, sem a necessidade de arbitragem.Em uma segunda etapa, aplicam-se as gaussianas encontradasem uma arquitetura de redes neurais articiais com o objetivo declassicar estas amostras. Em uma terceira etapa, comparam-se osresultados encontrados com os de classicadores clássicos conhecidosna literatura. Uma vez confrontados estes resultados, analisam-se asparticularidades de cada problema estudado e suas inuências sobreas métricas da metodologia proposta o que pode criar uma necessidade de adaptá-las para o tratamento de algumas destas particularidades. Dentre as particularidades estudadas estão a sobreposição de amostras classicadas, denida como ruídos, e o desbalanceamento de amostras, muito comum nos problemas reais. Para tratar a sobreposi ção foi proposto um processo de ltragem que objetiva melhorar a acurácia na classicação. Para o desbalanceamento foi usada na metodologia a técnica de undersampling que procura melhorar as acurácias conforme descrito na literatura. Como objetivo de dar uma nova a bordagem em um problema de classicação de despacho de usinas, foi proposto utilizar o método em um sistema de seis barras com duas usinas Termoelétricas, uma Hidroelétrica o d'água e duas Eólicas classicadas como geração distribuída, para validar sua aplicação em um problema que é bem atual, ou seja, qual tipo de usina deve ser despachada a depender das condições climáticas. Por m, o método proposto objetiva tratar os pontos descritos de forma a obter os melhores resultados possíveis para cada problema, sem a necessidade de ajustes de parâmetros das gaussianas a priori, o que permite sua aplica ção, de forma geral, ser simples de congurar, não necessitando de conhecimentos técnicos profundos para sua utilização.Universidade Federal de Minas GeraisUFMGFrederico Gualberto Ferreira CoelhoLuiz Carlos Bambirra TorresAntonio de Padua BragaAntonio de Padua BragaLuiz Carlos Bambirra TorresCristiano Leite de CastroRodney Rezende SaldanhaMarcelo de Oliveira Queiroz2019-08-12T08:15:49Z2019-08-12T08:15:49Z2017-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/BUOS-APWMT3info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-14T17:13:16Zoai:repositorio.ufmg.br:1843/BUOS-APWMT3Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-14T17:13:16Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Definição de parâmetros de RBF utilizando grafo de Gabriel
title Definição de parâmetros de RBF utilizando grafo de Gabriel
spellingShingle Definição de parâmetros de RBF utilizando grafo de Gabriel
Marcelo de Oliveira Queiroz
Engenharia Elétrica
Engenharia elétrica
title_short Definição de parâmetros de RBF utilizando grafo de Gabriel
title_full Definição de parâmetros de RBF utilizando grafo de Gabriel
title_fullStr Definição de parâmetros de RBF utilizando grafo de Gabriel
title_full_unstemmed Definição de parâmetros de RBF utilizando grafo de Gabriel
title_sort Definição de parâmetros de RBF utilizando grafo de Gabriel
author Marcelo de Oliveira Queiroz
author_facet Marcelo de Oliveira Queiroz
author_role author
dc.contributor.none.fl_str_mv Frederico Gualberto Ferreira Coelho
Luiz Carlos Bambirra Torres
Antonio de Padua Braga
Antonio de Padua Braga
Luiz Carlos Bambirra Torres
Cristiano Leite de Castro
Rodney Rezende Saldanha
dc.contributor.author.fl_str_mv Marcelo de Oliveira Queiroz
dc.subject.por.fl_str_mv Engenharia Elétrica
Engenharia elétrica
topic Engenharia Elétrica
Engenharia elétrica
description The use of RBF (Radial Basis Function) in sample classication problems has been a much discussed approach in the literature. Its diverse applications allow you to deal with problems of dierent complexities. Among the most applied radial functions Gaussian is considered one of the most ecient for its simplicity of conguration. However one of the challenges in using this type of function is to denethe parameters c and sigma, center and radius respectively, suitableto avoid sub or oversize in the solution of the problem. This workproposes a methodology based on Gabriel's graph and the theory ofthe dominant sets to nd these parameters for a given set of samples,without the necessity of arbitration. In a second step, the gaussiansfound in an articial neural network architecture are applied in orderto classify these samples. In a third step, we compare the resultsfound with those of classical classiers known in the literature. Oncethese results are analyzed, the particularities of each problem studiedand their inuences on the metrics of the proposed methodology areanalyzed, which may create a need to adapt them to the treatment ofsome of these particularities. Among the particularities studied arethe overlap of classied samples, dened as noise, and the unbalanceof samples, very common in real problems. In order to deal with theoverlap a ltering process was proposed that aims to improve the accuracy in the classication. For the unbalance the technique was usedin the technique of undersampling which seeks to improve accuracyas described in the literature. In order to re-embroider a problem ofclassication of dispatch of plants, it was proposed to use the methodin a six-bar system with two thermoelectric plants, one hydroelectricplant and two wind farms classied as distributed generation, to validateIts application in a problem that is very current, ie, which typeof plant should be dispatched depending on the climatic conditions.Finally, the proposed method aims to treat the described points in orderto obtain the best possible results for each problem, without theneed to adjust Gaussian parameters a priori, which allows its application, in general, to be simple to congure, not needing deep technical knowledge for its use.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-06
2019-08-12T08:15:49Z
2019-08-12T08:15:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/BUOS-APWMT3
url http://hdl.handle.net/1843/BUOS-APWMT3
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1823248122698006528