Manipulation task planning and motion control using task relaxations

Detalhes bibliográficos
Autor(a) principal: Marcos da Silva Pereira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/34528
Resumo: This master thesis addresses the integration of task planning and motion control in robotic manipulation for tasks that can be relaxed and the generation of feasible manipulation sequences that are executed by a controller that explicitly accounts for the task geometric constraints. To cope with the high dimensionality of the manipulation problem and the complexity of specifying the tasks, we use a multi-layered framework for task and motion planning adapted from the literature. The adapted framework consists of a high-level planner, which generates task plans for linear temporal logic specifications, and a low-level motion controller, based on constrained optimization, that allows defining regions of interest instead of exact locations while being reactive to changes in the workspace. Thus, there is no low-level motion planning time added to the total planning time. Moreover, since there is no replanning phase due to motion planner failures, the robot actions are generated only once for each task because the search for a plan occurs on a static graph. Concerning task relaxation, the task plan action of holding an object toward a target region is relaxed by controlling the end-effector distance to a target plane instead of requiring pose control. This way, instead of requiring six degrees of freedom to control the pose, only one degree of freedom is used to control the distance to a plane. We add constraints that keep the end-effector inside a region of interest and outside a restricted region while it moves toward the plane. Thus, it moves toward the target region that is constrained by the combination of geometric primitives. By using plane constraints, we define a rectangular target region that results in an inverted pyramid trunk region of interest. Additionally, we propose a new interpretation of conic constraints called point-cone constraint that allows defining circular target regions resulting in an inverted cone trunk. We evaluated the adapted framework with pick-and-place tasks with similar complexity to the original framework and showed that the number of plan nodes generated is smaller than the one in the original framework, which implies less total planning time. Lastly, it is shown that the end-effector remains within the regions of interest and moves toward the target region for both the rectangular and circular target regions.
id UFMG_c7a3377c261e02e7b74137411d9c3b35
oai_identifier_str oai:repositorio.ufmg.br:1843/34528
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Bruno Vilhena Adornohttp://lattes.cnpq.br/3363634987221133Luciano Cunha de Araújo PimentaMurilo Marques Marinhohttp://lattes.cnpq.br/5855690533991837Marcos da Silva Pereira2020-12-16T21:17:05Z2020-12-16T21:17:05Z2020-09-30http://hdl.handle.net/1843/34528This master thesis addresses the integration of task planning and motion control in robotic manipulation for tasks that can be relaxed and the generation of feasible manipulation sequences that are executed by a controller that explicitly accounts for the task geometric constraints. To cope with the high dimensionality of the manipulation problem and the complexity of specifying the tasks, we use a multi-layered framework for task and motion planning adapted from the literature. The adapted framework consists of a high-level planner, which generates task plans for linear temporal logic specifications, and a low-level motion controller, based on constrained optimization, that allows defining regions of interest instead of exact locations while being reactive to changes in the workspace. Thus, there is no low-level motion planning time added to the total planning time. Moreover, since there is no replanning phase due to motion planner failures, the robot actions are generated only once for each task because the search for a plan occurs on a static graph. Concerning task relaxation, the task plan action of holding an object toward a target region is relaxed by controlling the end-effector distance to a target plane instead of requiring pose control. This way, instead of requiring six degrees of freedom to control the pose, only one degree of freedom is used to control the distance to a plane. We add constraints that keep the end-effector inside a region of interest and outside a restricted region while it moves toward the plane. Thus, it moves toward the target region that is constrained by the combination of geometric primitives. By using plane constraints, we define a rectangular target region that results in an inverted pyramid trunk region of interest. Additionally, we propose a new interpretation of conic constraints called point-cone constraint that allows defining circular target regions resulting in an inverted cone trunk. We evaluated the adapted framework with pick-and-place tasks with similar complexity to the original framework and showed that the number of plan nodes generated is smaller than the one in the original framework, which implies less total planning time. Lastly, it is shown that the end-effector remains within the regions of interest and moves toward the target region for both the rectangular and circular target regions.Esta disserta¸c˜ao de mestrado trata da integra¸c˜ao de planejamento de tarefas e controle de movimento em rob´otica de manipula¸c˜ao para tarefas que podem ser relaxadas. O objetivo ´e gerar automaticamente sequˆencias fact´ıveis de manipula¸c˜ao para serem executadas por um controlador que considera restri¸c˜oes geom´etricas impostas pela tarefa. Para lidar com a alta dimensionalidade do problema de manipula¸c˜ao e a complexidade de especificar tarefas, foi usado um arcabou¸co multicamadas para planejamento de tarefa e movimento adaptado da literatura. O arcabou¸co adaptado consiste de um planejador de alto n´ıvel, que gera planos de tarefa para especifica¸c˜oes em l´ogica temporal linear, e um controlador de movimento de baixo n´ıvel baseado em otimiza¸c˜ao com restri¸c˜oes, que permite definir regi˜oes de interesse ao inv´es de localidades exatas e ´e reativo a mudan¸cas no espa¸co de trabalho. Logo, n˜ao h´a adi¸c˜ao de tempo de planejamento de movimento ao tempo total de planejamento. Al´em disso, como n˜ao h´a fase de replanejamento devido a falhas em um planejador de movimento, as a¸c˜oes para o robˆo s˜ao geradas apenas uma vez para cada tarefa, portanto, a busca por plano de tarefas ocorre em um grafo est´atico. Com rela¸c˜ao ao relaxamento de tarefas, a a¸c˜ao do plano de tarefas de segurar um objeto at´e uma regi˜ao alvo ´e relaxada fazendo-se controle de distˆancia ao plano alvo ao inv´es de controle de pose. Desse modo, ao inv´es de utilizar-se seis graus de liberdade para controlar a pose, apenas um grau de liberdade ´e utilizado para controlar a distˆancia ao plano. Para manter o efetuador dentro de uma regi˜ao de interesse e fora de uma regi˜ao proibida enquanto ele se desloca para o plano, restri¸c˜oes s˜ao adicionadas. Com as restri¸c˜oes, o efetuador se move para a regi˜ao alvo no plano, que ´e delimitada pela combina¸c˜ao de primitivas geom´etricas. Utilizando-se restri¸c˜oes por planos, foi definida uma regi˜ao alvo quadrada que resulta em uma regi˜ao de interesse na forma de um tronco de pirˆamide invertido. Al´em disso, foi proposta uma nova interpreta¸c˜ao de restri¸c˜ao cˆonica chamada restri¸c˜ao ponto-cone que permite definir regi˜oes alvos circulares e que resulta em um tronco de cone invertido. Essa abordagem foi testada com tarefas de pick-and-place com complexidade similar `a das tarefas realizadas no arcabou¸co original. O n´umero de n´os de planejamento gerados foi reduzido, o que implica em menor tempo total de planejamento. Por fim, foi mostrado que o efetuador permanece dentro da regi˜ao de interesse e se move em dire¸c˜ao ao plano alvo tanto no caso da regi˜ao quadrada quanto no caso da regi˜ao circular.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Engenharia ElétricaUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICAEngenharia elétricaRobôs - MovimentoRobôs - Sistemas de controleRobóticaLinear temporal logicTask planningConstrained motion controlTask relaxationsManipulation task planning and motion control using task relaxationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALManipulationTaskPlanningAndMotionControlUsingTaskRelaxations.pdfManipulationTaskPlanningAndMotionControlUsingTaskRelaxations.pdfapplication/pdf34748382https://repositorio.ufmg.br/bitstream/1843/34528/1/ManipulationTaskPlanningAndMotionControlUsingTaskRelaxations.pdf8444ffba6c6b8245f3fa465e37b609aeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82119https://repositorio.ufmg.br/bitstream/1843/34528/2/license.txt34badce4be7e31e3adb4575ae96af679MD521843/345282020-12-16 18:17:05.248oai:repositorio.ufmg.br:1843/34528TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KCg==Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2020-12-16T21:17:05Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Manipulation task planning and motion control using task relaxations
title Manipulation task planning and motion control using task relaxations
spellingShingle Manipulation task planning and motion control using task relaxations
Marcos da Silva Pereira
Linear temporal logic
Task planning
Constrained motion control
Task relaxations
Engenharia elétrica
Robôs - Movimento
Robôs - Sistemas de controle
Robótica
title_short Manipulation task planning and motion control using task relaxations
title_full Manipulation task planning and motion control using task relaxations
title_fullStr Manipulation task planning and motion control using task relaxations
title_full_unstemmed Manipulation task planning and motion control using task relaxations
title_sort Manipulation task planning and motion control using task relaxations
author Marcos da Silva Pereira
author_facet Marcos da Silva Pereira
author_role author
dc.contributor.advisor1.fl_str_mv Bruno Vilhena Adorno
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3363634987221133
dc.contributor.referee1.fl_str_mv Luciano Cunha de Araújo Pimenta
dc.contributor.referee2.fl_str_mv Murilo Marques Marinho
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5855690533991837
dc.contributor.author.fl_str_mv Marcos da Silva Pereira
contributor_str_mv Bruno Vilhena Adorno
Luciano Cunha de Araújo Pimenta
Murilo Marques Marinho
dc.subject.por.fl_str_mv Linear temporal logic
Task planning
Constrained motion control
Task relaxations
topic Linear temporal logic
Task planning
Constrained motion control
Task relaxations
Engenharia elétrica
Robôs - Movimento
Robôs - Sistemas de controle
Robótica
dc.subject.other.pt_BR.fl_str_mv Engenharia elétrica
Robôs - Movimento
Robôs - Sistemas de controle
Robótica
description This master thesis addresses the integration of task planning and motion control in robotic manipulation for tasks that can be relaxed and the generation of feasible manipulation sequences that are executed by a controller that explicitly accounts for the task geometric constraints. To cope with the high dimensionality of the manipulation problem and the complexity of specifying the tasks, we use a multi-layered framework for task and motion planning adapted from the literature. The adapted framework consists of a high-level planner, which generates task plans for linear temporal logic specifications, and a low-level motion controller, based on constrained optimization, that allows defining regions of interest instead of exact locations while being reactive to changes in the workspace. Thus, there is no low-level motion planning time added to the total planning time. Moreover, since there is no replanning phase due to motion planner failures, the robot actions are generated only once for each task because the search for a plan occurs on a static graph. Concerning task relaxation, the task plan action of holding an object toward a target region is relaxed by controlling the end-effector distance to a target plane instead of requiring pose control. This way, instead of requiring six degrees of freedom to control the pose, only one degree of freedom is used to control the distance to a plane. We add constraints that keep the end-effector inside a region of interest and outside a restricted region while it moves toward the plane. Thus, it moves toward the target region that is constrained by the combination of geometric primitives. By using plane constraints, we define a rectangular target region that results in an inverted pyramid trunk region of interest. Additionally, we propose a new interpretation of conic constraints called point-cone constraint that allows defining circular target regions resulting in an inverted cone trunk. We evaluated the adapted framework with pick-and-place tasks with similar complexity to the original framework and showed that the number of plan nodes generated is smaller than the one in the original framework, which implies less total planning time. Lastly, it is shown that the end-effector remains within the regions of interest and moves toward the target region for both the rectangular and circular target regions.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-12-16T21:17:05Z
dc.date.available.fl_str_mv 2020-12-16T21:17:05Z
dc.date.issued.fl_str_mv 2020-09-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/34528
url http://hdl.handle.net/1843/34528
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/34528/1/ManipulationTaskPlanningAndMotionControlUsingTaskRelaxations.pdf
https://repositorio.ufmg.br/bitstream/1843/34528/2/license.txt
bitstream.checksum.fl_str_mv 8444ffba6c6b8245f3fa465e37b609ae
34badce4be7e31e3adb4575ae96af679
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589325782253568