Automorfismos dos 2-grupos de Suzuki

Detalhes bibliográficos
Autor(a) principal: Jose Luis Vilca Rodriguez
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/EABA-9WMMEH
Resumo: Suzuki 2-groups form an interesting class of finite 2-groups. They were introduced by Higman in 1961 and further studied by various authors. By definition, if G is a Suzuki 2-group, then a solvable subgroup of Aut(G) permutes transitively the involutions of G. Higman identified four infinite families of Suzuki 2-groups and proved that each Suzuki 2-group belongs, up to isomorphism, to one of these families. This dissertation is devoted to the study of the automorphisms of Suzuki 2-groups. The main theorems describes the automorphism groups of the groups A(...) and B(n) (the latter is isomorphic to a Sylow 2-subgroup of SU(...). The main result states that in these cases the automorphism groups are isomorphic to the semidirect product of an elementary abelian 2-group and a group isomorphic to (...) where m = n in the case of A(...) and m = 2n in the case of B(n). The description of the automorphism groups is obtained using a methodology based on the theory of permutation groups and linear groups. The novel idea in the proof presented here for the groups A(..) is the use of the characterization by Kantor of the linear groups that contain a Singer cycle. In the case of B(n), we adopt the proof presented by Landrock in 1974, which is also based on the theory of Singer cycles and on a result by Hawkes that describe a certain part of the automorphism group of a 2-group. We obtain, as a by-product, a result that states that the Suzuki 2-groups that we study have precisely 3 characteristic subgroups, and thus we partially verify a conjecture made by Glasby, Palfy and Schneider in 2011.
id UFMG_d6da7ec14794760a39a42bc7d0b47bdd
oai_identifier_str oai:repositorio.ufmg.br:1843/EABA-9WMMEH
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Automorfismos dos 2-grupos de SuzukiSuzukiAutomorfismoMatemáticaTeoria dos gruposAutomorfismoSuzuki 2-groups form an interesting class of finite 2-groups. They were introduced by Higman in 1961 and further studied by various authors. By definition, if G is a Suzuki 2-group, then a solvable subgroup of Aut(G) permutes transitively the involutions of G. Higman identified four infinite families of Suzuki 2-groups and proved that each Suzuki 2-group belongs, up to isomorphism, to one of these families. This dissertation is devoted to the study of the automorphisms of Suzuki 2-groups. The main theorems describes the automorphism groups of the groups A(...) and B(n) (the latter is isomorphic to a Sylow 2-subgroup of SU(...). The main result states that in these cases the automorphism groups are isomorphic to the semidirect product of an elementary abelian 2-group and a group isomorphic to (...) where m = n in the case of A(...) and m = 2n in the case of B(n). The description of the automorphism groups is obtained using a methodology based on the theory of permutation groups and linear groups. The novel idea in the proof presented here for the groups A(..) is the use of the characterization by Kantor of the linear groups that contain a Singer cycle. In the case of B(n), we adopt the proof presented by Landrock in 1974, which is also based on the theory of Singer cycles and on a result by Hawkes that describe a certain part of the automorphism group of a 2-group. We obtain, as a by-product, a result that states that the Suzuki 2-groups that we study have precisely 3 characteristic subgroups, and thus we partially verify a conjecture made by Glasby, Palfy and Schneider in 2011.Os 2-grupos de Suzuki formam uma interessante classe de 2-grupos finitos. Eles foram introduzidos por Higman em 1961 e foram estudados por vários autores. Por definição, se G é um 2-grupo de Suzuki, então um subgrupo solúvel de Aut(G) permuta transitivamente as involuções de G. Higman identificou quatro famíias infinitas de 2-grupos de Suzuki edemonstrou que salvo isomorfismo todo 2-grupo de Suzuki pertence a uma destas famíias. Esta dissertação é dedicada ao estudo dos automorfismos dos 2-grupos de Suzuki. Os principais teoremas descrevem os grupos de automorfismos dos grupos (...) último isomorfo a um 2-subgrupo de Sylow de SU (...). O resultado principal afirma que nestes casos o grupo de automorfismos é isomorfo ao produto semidireto de um 2-grupo abeliano elementar e um grupo isomorfo a (...), onde m = n no caso A(...) e m = 2n no caso B(n). A descrição dos grupos de automorfismos é obtida usando métodos baseados em teoria de grupos de permutações e grupos lineares. A ideia nova na prova apresentada para os grupos A(...), é usar a caracterização dada por Kantor dos grupos lineares que contém um ciclo de Singer. No caso de B(n), seguimos a prova dada por Landrock em 1974, a qual está também baseada em teoria de ciclos de Singer e num resultado devido a Hawkes, que descreve uma parte do grupo de automorfismos de um 2-grupo. Obtemos, como consequência, um resultado que afirma que os 2-grupos de Suzuki que estudamos aqui, têm precisamente 3 subgrupos característicos, e assim verificamos parcialmente uma conjetura feita por Glasby, Pálfy and Schneider em 2011.Universidade Federal de Minas GeraisUFMGCsaba SechneiderAna Cristina VieiraJohn William MacquarrieBrian Philip CorrJose Luis Vilca Rodriguez2019-08-13T10:01:55Z2019-08-13T10:01:55Z2015-04-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/EABA-9WMMEHinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-15T01:29:31Zoai:repositorio.ufmg.br:1843/EABA-9WMMEHRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-15T01:29:31Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Automorfismos dos 2-grupos de Suzuki
title Automorfismos dos 2-grupos de Suzuki
spellingShingle Automorfismos dos 2-grupos de Suzuki
Jose Luis Vilca Rodriguez
Suzuki
Automorfismo
Matemática
Teoria dos grupos
Automorfismo
title_short Automorfismos dos 2-grupos de Suzuki
title_full Automorfismos dos 2-grupos de Suzuki
title_fullStr Automorfismos dos 2-grupos de Suzuki
title_full_unstemmed Automorfismos dos 2-grupos de Suzuki
title_sort Automorfismos dos 2-grupos de Suzuki
author Jose Luis Vilca Rodriguez
author_facet Jose Luis Vilca Rodriguez
author_role author
dc.contributor.none.fl_str_mv Csaba Sechneider
Ana Cristina Vieira
John William Macquarrie
Brian Philip Corr
dc.contributor.author.fl_str_mv Jose Luis Vilca Rodriguez
dc.subject.por.fl_str_mv Suzuki
Automorfismo
Matemática
Teoria dos grupos
Automorfismo
topic Suzuki
Automorfismo
Matemática
Teoria dos grupos
Automorfismo
description Suzuki 2-groups form an interesting class of finite 2-groups. They were introduced by Higman in 1961 and further studied by various authors. By definition, if G is a Suzuki 2-group, then a solvable subgroup of Aut(G) permutes transitively the involutions of G. Higman identified four infinite families of Suzuki 2-groups and proved that each Suzuki 2-group belongs, up to isomorphism, to one of these families. This dissertation is devoted to the study of the automorphisms of Suzuki 2-groups. The main theorems describes the automorphism groups of the groups A(...) and B(n) (the latter is isomorphic to a Sylow 2-subgroup of SU(...). The main result states that in these cases the automorphism groups are isomorphic to the semidirect product of an elementary abelian 2-group and a group isomorphic to (...) where m = n in the case of A(...) and m = 2n in the case of B(n). The description of the automorphism groups is obtained using a methodology based on the theory of permutation groups and linear groups. The novel idea in the proof presented here for the groups A(..) is the use of the characterization by Kantor of the linear groups that contain a Singer cycle. In the case of B(n), we adopt the proof presented by Landrock in 1974, which is also based on the theory of Singer cycles and on a result by Hawkes that describe a certain part of the automorphism group of a 2-group. We obtain, as a by-product, a result that states that the Suzuki 2-groups that we study have precisely 3 characteristic subgroups, and thus we partially verify a conjecture made by Glasby, Palfy and Schneider in 2011.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-06
2019-08-13T10:01:55Z
2019-08-13T10:01:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/EABA-9WMMEH
url http://hdl.handle.net/1843/EABA-9WMMEH
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1816829839942877184