Threshold solutions for the nonlinear Schrödinger equation

Detalhes bibliográficos
Autor(a) principal: Luccas Campos
Data de Publicação: 2022
Outros Autores: Luiz Gustavo Farah Dias, Svetlana Roudenko
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/60391
https://orcid.org/0000-0002-7041-6031
https://orcid.org/0000-0003-1034-3480
https://orcid.org/0000-0002-7407-7639
Resumo: We study the focusing NLS equation in Rᴺ in the mass-supercritical and energy-subcritical (or intercritical) regime, with H1 data at the mass-energy threshold ME.(u0)=ME(Q), where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the H¹-critical case, in dimensions N=3; 4; 5, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, Q±, besides the standing wave eᶦᵗQ, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blowup occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the H¹-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.
id UFMG_d7d434f1e5c49fdbc8fae56bc9677cb6
oai_identifier_str oai:repositorio.ufmg.br:1843/60391
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling 2023-10-31T21:32:08Z2023-10-31T21:32:08Z20223851637170810.4171/RMI/13372235-0616http://hdl.handle.net/1843/60391https://orcid.org/0000-0002-7041-6031https://orcid.org/0000-0003-1034-3480https://orcid.org/0000-0002-7407-7639We study the focusing NLS equation in Rᴺ in the mass-supercritical and energy-subcritical (or intercritical) regime, with H1 data at the mass-energy threshold ME.(u0)=ME(Q), where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the H¹-critical case, in dimensions N=3; 4; 5, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, Q±, besides the standing wave eᶦᵗQ, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blowup occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the H¹-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.Estudamos a equação NLS focalizada em Rᴺ no regime massa supercrítica e energia subcrítica (ou intercrítica), com dados H1 no limiar massa-energia ME.(u0)=ME(Q), onde Q é o estado fundamental. Anteriormente, Duyckaerts–Merle estudou o comportamento de soluções limiares no caso H¹-crítico, nas dimensões N=3; 4; 5, posteriormente generalizado por Li – Zhang para dimensões superiores. No caso intercrítico, Duyckaerts – Roudenko estudou o problema de limite para a equação NLS cúbica 3d. Neste artigo, generalizamos os resultados de Duyckaerts–Roudenko para qualquer dimensão e qualquer potência da não linearidade para todo o intervalo intercrítico. Mostramos a existência de soluções especiais, Q±, além da onda estacionária eᶦᵗQ, que se aproximam exponencialmente da onda estacionária na direção positiva do tempo, mas diferem em seu comportamento para o tempo negativo. Classificamos as soluções no nível de limiar, mostrando que a explosão ocorre em tempo finito (positivo e negativo), ou espalhamento em ambas as direções do tempo, ou que a solução é igual a uma das três soluções especiais acima, até simetrias. Nossa prova se estende ao caso H¹-crítico, dando assim uma prova alternativa do resultado de Li–Zhang e unificando os casos críticos e intercríticos. Esses resultados são obtidos estudando a equação linearizada em torno da onda estacionária e algumas soluções aproximadas personalizadas para a equação NLS. Estabelecemos importantes propriedades de decaimento de funções associadas ao espectro do operador linearizado de Schrödinger, que, em combinação com estabilidade modulacional e coercividade para o operador linearizado em subespaços especiais, nos permite usar um argumento de ponto fixo para mostrar a existência de soluções especiais . Finalmente, provamos a unicidade estudando soluções com decaimento exponencial para uma sequência de equações linearizadas.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFAPESP - Fundação de Amparo à Pesquisa do Estado de São PauloporUniversidade Federal de Minas GeraisUFMGBrasilICX - DEPARTAMENTO DE MATEMÁTICARevista matemática iberoamericanaSchrodinger, Equação de.Equações diferenciais parciaisMatemáticaThreshold solutions for the nonlinear Schrödinger equationSoluções limite para a equação não linear de Schrödingerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://ems.press/journals/rmi/articles/4552493Luccas CamposLuiz Gustavo Farah DiasSvetlana Roudenkoapplication/pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/60391/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALThreshold solutions for the nonlinear Schrödinger equation.pdfThreshold solutions for the nonlinear Schrödinger equation.pdfapplication/pdf755645https://repositorio.ufmg.br/bitstream/1843/60391/2/Threshold%20solutions%20for%20the%20nonlinear%20Schr%c3%b6dinger%20equation.pdf00f8ab06cacb1316366aa911a928625cMD521843/603912023-10-31 18:32:08.687oai:repositorio.ufmg.br:1843/60391TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-10-31T21:32:08Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Threshold solutions for the nonlinear Schrödinger equation
dc.title.alternative.pt_BR.fl_str_mv Soluções limite para a equação não linear de Schrödinger
title Threshold solutions for the nonlinear Schrödinger equation
spellingShingle Threshold solutions for the nonlinear Schrödinger equation
Luccas Campos
Schrodinger, Equação de.
Equações diferenciais parciais
Matemática
title_short Threshold solutions for the nonlinear Schrödinger equation
title_full Threshold solutions for the nonlinear Schrödinger equation
title_fullStr Threshold solutions for the nonlinear Schrödinger equation
title_full_unstemmed Threshold solutions for the nonlinear Schrödinger equation
title_sort Threshold solutions for the nonlinear Schrödinger equation
author Luccas Campos
author_facet Luccas Campos
Luiz Gustavo Farah Dias
Svetlana Roudenko
author_role author
author2 Luiz Gustavo Farah Dias
Svetlana Roudenko
author2_role author
author
dc.contributor.author.fl_str_mv Luccas Campos
Luiz Gustavo Farah Dias
Svetlana Roudenko
dc.subject.other.pt_BR.fl_str_mv Schrodinger, Equação de.
Equações diferenciais parciais
Matemática
topic Schrodinger, Equação de.
Equações diferenciais parciais
Matemática
description We study the focusing NLS equation in Rᴺ in the mass-supercritical and energy-subcritical (or intercritical) regime, with H1 data at the mass-energy threshold ME.(u0)=ME(Q), where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the H¹-critical case, in dimensions N=3; 4; 5, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, Q±, besides the standing wave eᶦᵗQ, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blowup occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the H¹-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-10-31T21:32:08Z
dc.date.available.fl_str_mv 2023-10-31T21:32:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/60391
dc.identifier.doi.pt_BR.fl_str_mv 10.4171/RMI/1337
dc.identifier.issn.pt_BR.fl_str_mv 2235-0616
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0002-7041-6031
https://orcid.org/0000-0003-1034-3480
https://orcid.org/0000-0002-7407-7639
identifier_str_mv 10.4171/RMI/1337
2235-0616
url http://hdl.handle.net/1843/60391
https://orcid.org/0000-0002-7041-6031
https://orcid.org/0000-0003-1034-3480
https://orcid.org/0000-0002-7407-7639
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartof.pt_BR.fl_str_mv Revista matemática iberoamericana
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE MATEMÁTICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/60391/1/License.txt
https://repositorio.ufmg.br/bitstream/1843/60391/2/Threshold%20solutions%20for%20the%20nonlinear%20Schr%c3%b6dinger%20equation.pdf
bitstream.checksum.fl_str_mv fa505098d172de0bc8864fc1287ffe22
00f8ab06cacb1316366aa911a928625c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589503046123520