Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/5592 |
Resumo: | Despite its great potential, the use of microalgae for energy production purposes is not economically viable yet, due to their high production costs. One of the major bottlenecks for their large-scale production is the energy consumption for temperature control in photobioreactors used for their cultivation. The present work sought to understand the causes of overheating in photobioreactors, in order to outline strategies to reduce this overheating. Thus, microalgae light saturation curves were experimentally obtained for cultivation starting from three different initial concentrations. In cultures with low initial microalgae concentration, the light saturation can be observed directly, by simply evaluating the initial oxygen production rate. However, the effects of excess radiation are best observed when considering the biomass production over a longer period of growth, as inhibitory effects may be slow to manifest themselves in the rate of production. The biomass production rate is not affected initially, but excess illumination may impede continued growth in the long run. A good strategy to reduce heat dissipation costs in photobioractors for microalgae cultivation would be not only to avoid the incidence of infra-red and ultraviolet radiation, but to limit visible radiation with intensity above 1000 μmolphotons .m-2 .s-1. Another strategy to reduce overheating in photobioreactors may be to provide flashing light, alternating short intervals of light and dark. Such a measure improves the performance of microalgae production and reduces the demand for heat dissipation. This flashing was investigated here, but the use of higher frequencies, in order to maintain a production rate with large ranges and increasing energy efficiency, must still be evaluated. Executing this study required the development of an automated low cost photobioreactor. Equipped with a microcontroller, this reactor was able, through the implementation of a PID controller, to control the growth temperature regardless of external interferences and automatically capture and store online data of the sensors used to monitor the experimental microalgae growth, including the amount of heat dissipation. Through the use of the same microcontroller, it was also possible to adapt a low-cost turbidity sensor and calibrate it to measure turbidity continuously, with an accuracy comparable to that of commercial laboratory equipment, provided that it operates in one of two modes: either operating at constant temperature, or operating after carrying out a second calibration with at least 3 different temperatures within the expected range of operation. |
id |
UFMS_0645c66b0c239069737a5cef1ae13629 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/5592 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2023-02-08T16:49:41Z2023-02-08T16:49:41Z2018https://repositorio.ufms.br/handle/123456789/5592Despite its great potential, the use of microalgae for energy production purposes is not economically viable yet, due to their high production costs. One of the major bottlenecks for their large-scale production is the energy consumption for temperature control in photobioreactors used for their cultivation. The present work sought to understand the causes of overheating in photobioreactors, in order to outline strategies to reduce this overheating. Thus, microalgae light saturation curves were experimentally obtained for cultivation starting from three different initial concentrations. In cultures with low initial microalgae concentration, the light saturation can be observed directly, by simply evaluating the initial oxygen production rate. However, the effects of excess radiation are best observed when considering the biomass production over a longer period of growth, as inhibitory effects may be slow to manifest themselves in the rate of production. The biomass production rate is not affected initially, but excess illumination may impede continued growth in the long run. A good strategy to reduce heat dissipation costs in photobioractors for microalgae cultivation would be not only to avoid the incidence of infra-red and ultraviolet radiation, but to limit visible radiation with intensity above 1000 μmolphotons .m-2 .s-1. Another strategy to reduce overheating in photobioreactors may be to provide flashing light, alternating short intervals of light and dark. Such a measure improves the performance of microalgae production and reduces the demand for heat dissipation. This flashing was investigated here, but the use of higher frequencies, in order to maintain a production rate with large ranges and increasing energy efficiency, must still be evaluated. Executing this study required the development of an automated low cost photobioreactor. Equipped with a microcontroller, this reactor was able, through the implementation of a PID controller, to control the growth temperature regardless of external interferences and automatically capture and store online data of the sensors used to monitor the experimental microalgae growth, including the amount of heat dissipation. Through the use of the same microcontroller, it was also possible to adapt a low-cost turbidity sensor and calibrate it to measure turbidity continuously, with an accuracy comparable to that of commercial laboratory equipment, provided that it operates in one of two modes: either operating at constant temperature, or operating after carrying out a second calibration with at least 3 different temperatures within the expected range of operation.Apesar do seu grande potencial, o uso das microalgas para fins energéticos ainda não alcançou viabilidade econômica, devido ao elevado custo de produção das mesmas. Um dos principais gargalos de sua produção em larga escala é a quantidade de energia necessária para o controle da temperatura durante o cultivo em fotobiorreatores. O presente trabalho procurou entender as causas do superaquecimento em fotobiorreatores e traçar estratégias visando combatê-lo. Para tal foram obtidas experimentalmente as curvas de saturação de luz de microalgas a partir de três concentrações iniciais diferentes. Em cultivos com baixa concentração inicial de microalgas, a saturação de luz pode ser observada apenas avaliando a produção de oxigênio nos primeiros instantes. Entretanto, os efeitos do excesso de radiação são melhor observados ao considerar a produção de biomassa ao longo de um prazo maior de cultivo, pois estes efeitos podem demorar a se manifestar na taxa de produção, não a afetando inicialmente, mas podendo inviabilizar a continuidade do crescimento a longo prazo. Uma boa estratégia para redução dos custos com dissipação de calor no cultivo de microalgas em fotobiorreatores, seria, além de evitar a incidência das radiações infravermelho e ultravioleta, limitar a radiação visível com intensidade acima de 1000 μmol fótons .m−2 .s−1. Outra estratégia para reduzir o superaquecimento em fotobiorreatores pode ser o fornecimento de luz intermitente, alternando curtos intervalos de luz e escuridão; tal medida pode melhorar o desempenho da produção de microalgas e reduzir a demanda por dissipação de calor. Entretanto, deve-se investigar a aplicação de pulsos com frequências maiores que mantenham a taxa de produção com intervalos de escuro maiores visando aprimorar a eficiência energética. O presente estudo foi possibilitado através do desenvolvimento de um fotobiorreator automatizado de baixo custo. Dotado de um microcontrolador, o reator foi capaz de, através da implementação de controlador PID, controlar a temperatura de cultivo independente das interferências externas e automaticamente, capturar e armazenar on-line os dados dos diversos sensores utilizados para monitorar o cultivo experimental de microalgas. Com o uso do mesmo microcontrolador, também foi possível adaptar um sensor de turbidez de baixo custo e calibrá-lo para obter uma precisão comparável àquela dos equipamentos comerciais para laboratório, desde que respeitado o seu modo de operação: trabalhar com temperatura constante ou realizar uma segunda calibração com pelo menos 3 temperaturas diferentes dentro da faixa esperada de operação.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilfotobiorreator, tecnologia de baixo custo, microalgasDesenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMarc Arpad BonczGabriel Bastos Bragainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese_Gabriel_v3.pdfTese_Gabriel_v3.pdfapplication/pdf2294284https://repositorio.ufms.br/bitstream/123456789/5592/-1/Tese_Gabriel_v3.pdfb51ea1a7d701c041b28354bf20fa1fb7MD5-1123456789/55922023-02-08 12:49:42.724oai:repositorio.ufms.br:123456789/5592Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-02-08T16:49:42Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
title |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
spellingShingle |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. Gabriel Bastos Braga fotobiorreator, tecnologia de baixo custo, microalgas |
title_short |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
title_full |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
title_fullStr |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
title_full_unstemmed |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
title_sort |
Desenvolvimento de um fotobiorreator automatizado de baixo custo para estudo de saturação de luz de microalgas. |
author |
Gabriel Bastos Braga |
author_facet |
Gabriel Bastos Braga |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Marc Arpad Boncz |
dc.contributor.author.fl_str_mv |
Gabriel Bastos Braga |
contributor_str_mv |
Marc Arpad Boncz |
dc.subject.por.fl_str_mv |
fotobiorreator, tecnologia de baixo custo, microalgas |
topic |
fotobiorreator, tecnologia de baixo custo, microalgas |
description |
Despite its great potential, the use of microalgae for energy production purposes is not economically viable yet, due to their high production costs. One of the major bottlenecks for their large-scale production is the energy consumption for temperature control in photobioreactors used for their cultivation. The present work sought to understand the causes of overheating in photobioreactors, in order to outline strategies to reduce this overheating. Thus, microalgae light saturation curves were experimentally obtained for cultivation starting from three different initial concentrations. In cultures with low initial microalgae concentration, the light saturation can be observed directly, by simply evaluating the initial oxygen production rate. However, the effects of excess radiation are best observed when considering the biomass production over a longer period of growth, as inhibitory effects may be slow to manifest themselves in the rate of production. The biomass production rate is not affected initially, but excess illumination may impede continued growth in the long run. A good strategy to reduce heat dissipation costs in photobioractors for microalgae cultivation would be not only to avoid the incidence of infra-red and ultraviolet radiation, but to limit visible radiation with intensity above 1000 μmolphotons .m-2 .s-1. Another strategy to reduce overheating in photobioreactors may be to provide flashing light, alternating short intervals of light and dark. Such a measure improves the performance of microalgae production and reduces the demand for heat dissipation. This flashing was investigated here, but the use of higher frequencies, in order to maintain a production rate with large ranges and increasing energy efficiency, must still be evaluated. Executing this study required the development of an automated low cost photobioreactor. Equipped with a microcontroller, this reactor was able, through the implementation of a PID controller, to control the growth temperature regardless of external interferences and automatically capture and store online data of the sensors used to monitor the experimental microalgae growth, including the amount of heat dissipation. Through the use of the same microcontroller, it was also possible to adapt a low-cost turbidity sensor and calibrate it to measure turbidity continuously, with an accuracy comparable to that of commercial laboratory equipment, provided that it operates in one of two modes: either operating at constant temperature, or operating after carrying out a second calibration with at least 3 different temperatures within the expected range of operation. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018 |
dc.date.accessioned.fl_str_mv |
2023-02-08T16:49:41Z |
dc.date.available.fl_str_mv |
2023-02-08T16:49:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/5592 |
url |
https://repositorio.ufms.br/handle/123456789/5592 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/5592/-1/Tese_Gabriel_v3.pdf |
bitstream.checksum.fl_str_mv |
b51ea1a7d701c041b28354bf20fa1fb7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448036080353280 |