Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/647 |
Resumo: | As fraudes representam as maiores perdas comerciais das empresas de distribuição de energia elétrica. Devido ao elevado número de consumidores, as inspeções geralmente são feitas sem uma pré-análise de comportamento dos inspecionados, resultando em baixas taxas de acerto. Como as empresas de distribuição possuem muitas informações sobre seus consumidores armazenadas em bancos de dados, é possível identificar o perfil dos clientes fraudadores e utilizar este conhecimento na orientação das futuras inspeções. Este trabalho propõe uma metodologia baseada em Rough Sets e KDD para detecção de fraudes em consumidores de energia elétrica. Esta metodologia realiza uma avaliação detalhada da região de fronteira entre clientes normais e fraudadores, identificando padrões de comportamento fraudulentos nos dados históricos das empresas de energia elétrica. A partir destes padrões, derivam-se regras de classificação que, em futuros processos de inspeção, indicarão quais clientes apresentam perfis fraudulentos. Com inspeções guiadas por comportamentos suspeitos, aumentase a taxa de acerto e a quantidade de fraudes detectadas, diminuindo as perdas com fraudes nas empresas de distribuição de energia elétrica. |
id |
UFMS_079ef90a457e4ac2d7657cfea97facd6 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/647 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2011-10-26T12:52:43Z2021-09-30T19:56:19Z2005https://repositorio.ufms.br/handle/123456789/647As fraudes representam as maiores perdas comerciais das empresas de distribuição de energia elétrica. Devido ao elevado número de consumidores, as inspeções geralmente são feitas sem uma pré-análise de comportamento dos inspecionados, resultando em baixas taxas de acerto. Como as empresas de distribuição possuem muitas informações sobre seus consumidores armazenadas em bancos de dados, é possível identificar o perfil dos clientes fraudadores e utilizar este conhecimento na orientação das futuras inspeções. Este trabalho propõe uma metodologia baseada em Rough Sets e KDD para detecção de fraudes em consumidores de energia elétrica. Esta metodologia realiza uma avaliação detalhada da região de fronteira entre clientes normais e fraudadores, identificando padrões de comportamento fraudulentos nos dados históricos das empresas de energia elétrica. A partir destes padrões, derivam-se regras de classificação que, em futuros processos de inspeção, indicarão quais clientes apresentam perfis fraudulentos. Com inspeções guiadas por comportamentos suspeitos, aumentase a taxa de acerto e a quantidade de fraudes detectadas, diminuindo as perdas com fraudes nas empresas de distribuição de energia elétrica.Frauds represent a high percentage of the total commercial losses for electrical energy companies. In general, due to the high number of consumers, in-site inspections are made without any criteria, which cause a low rightness rate. On the other hand, electrical energy companies have information about their consumers stored in their databases. This information could be used to identify behavior patterns that are common among consumers that commit frauds, and this could guide the selection of the consumer that should undergo inspection. This work proposes a KDD and Rough Sets based methodology for consumer fraud detection for electrical energy companies. This methodology helps to find out consumer fraud behavior profiles at the company databases. From these patterns, a set of classification rules are created to fetch consumers that should be inspected. Using such strategy, the companies expect to increase the rightness rate and therefore decrease profit losses due to consumer fraud.porEnergia ElétricaConsumo de Energia ElétricaDistribuição de Energia ElétricaDetecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Setsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPinto, João Onofre PereiraCabral Junior, José Edisoninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILJosé Edison Cabral Junior.pdf.jpgJosé Edison Cabral Junior.pdf.jpgGenerated Thumbnailimage/jpeg1100https://repositorio.ufms.br/bitstream/123456789/647/4/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf.jpgf2514afc918c407d819c7e6fb05824f3MD54TEXTJosé Edison Cabral Junior.pdf.txtJosé Edison Cabral Junior.pdf.txtExtracted texttext/plain189858https://repositorio.ufms.br/bitstream/123456789/647/3/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf.txt183fba7c2c5075a7c7314859c495bc1cMD53ORIGINALJosé Edison Cabral Junior.pdfJosé Edison Cabral Junior.pdfapplication/pdf865711https://repositorio.ufms.br/bitstream/123456789/647/1/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf44d05664f9f18f0f7a1c055569030d91MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufms.br/bitstream/123456789/647/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/6472021-09-30 15:56:19.247oai:repositorio.ufms.br:123456789/647Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242021-09-30T19:56:19Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
title |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
spellingShingle |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets Cabral Junior, José Edison Energia Elétrica Consumo de Energia Elétrica Distribuição de Energia Elétrica |
title_short |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
title_full |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
title_fullStr |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
title_full_unstemmed |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
title_sort |
Detecção de Fraudes em Unidades Consumidoras de Energia Elétrica Usando Rough Sets |
author |
Cabral Junior, José Edison |
author_facet |
Cabral Junior, José Edison |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pinto, João Onofre Pereira |
dc.contributor.author.fl_str_mv |
Cabral Junior, José Edison |
contributor_str_mv |
Pinto, João Onofre Pereira |
dc.subject.por.fl_str_mv |
Energia Elétrica Consumo de Energia Elétrica Distribuição de Energia Elétrica |
topic |
Energia Elétrica Consumo de Energia Elétrica Distribuição de Energia Elétrica |
description |
As fraudes representam as maiores perdas comerciais das empresas de distribuição de energia elétrica. Devido ao elevado número de consumidores, as inspeções geralmente são feitas sem uma pré-análise de comportamento dos inspecionados, resultando em baixas taxas de acerto. Como as empresas de distribuição possuem muitas informações sobre seus consumidores armazenadas em bancos de dados, é possível identificar o perfil dos clientes fraudadores e utilizar este conhecimento na orientação das futuras inspeções. Este trabalho propõe uma metodologia baseada em Rough Sets e KDD para detecção de fraudes em consumidores de energia elétrica. Esta metodologia realiza uma avaliação detalhada da região de fronteira entre clientes normais e fraudadores, identificando padrões de comportamento fraudulentos nos dados históricos das empresas de energia elétrica. A partir destes padrões, derivam-se regras de classificação que, em futuros processos de inspeção, indicarão quais clientes apresentam perfis fraudulentos. Com inspeções guiadas por comportamentos suspeitos, aumentase a taxa de acerto e a quantidade de fraudes detectadas, diminuindo as perdas com fraudes nas empresas de distribuição de energia elétrica. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005 |
dc.date.accessioned.fl_str_mv |
2011-10-26T12:52:43Z |
dc.date.available.fl_str_mv |
2021-09-30T19:56:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/647 |
url |
https://repositorio.ufms.br/handle/123456789/647 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/647/4/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf.jpg https://repositorio.ufms.br/bitstream/123456789/647/3/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf.txt https://repositorio.ufms.br/bitstream/123456789/647/1/Jos%c3%a9%20Edison%20Cabral%20Junior.pdf https://repositorio.ufms.br/bitstream/123456789/647/2/license.txt |
bitstream.checksum.fl_str_mv |
f2514afc918c407d819c7e6fb05824f3 183fba7c2c5075a7c7314859c495bc1c 44d05664f9f18f0f7a1c055569030d91 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448014239563776 |