DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/8513 |
Resumo: | Lutzomyia longipalpis and Lutzomyia cruzi are two phlebotomine species in Brazil that are vectors of Leishmania infantum, the causative agent of visceral leishmaniasis. Lutzomyia longipalpis is found throughout the country, while Lutzomyia cruzi is only present in the Centre-West and Northeast regions. The females of both species are morphologically identical and cannot be differentiated. In Mato Grosso do Sul, both species, Lutzomyia longipalpis and Lutzomyia cruzi, are found in six municipalities where visceral leishmaniasis has been reported. It is important to taxonomically identify the species as the epidemiological profile can be influenced by the vector species. The longipalpis complex, which includes Lutzomyia longipalpis and other species, has been identified based on behavioural, biochemical and morphological evidence. To address this issue, alternative methods must be explored. Fourier Transform Infrared Spectroscopy (FTIR) is a technique that can characterize molecular bands through sound spectra without the need for prior sample preparation. It is commonly used in conjunction with machine learning (ML) by various groups. The objective of this study is to differentiate between female Lutzomyia longipalpis and Lutzomyia cruzi using FTIR and machine learning. A total of 120 female sand flies, 60 Lutzomyia cruzi and 60 Lutzomyia longipalpis, were analysed using a spectrometer in groups of four. The obtained spectra were analysed using multi-analysis and machine learning to characterise the species. The Linear SVM algorithm was used in three band ranges (4000 to 600 cm-¹; 3000 to 2800 cm-¹; 1800 to 800 cm-¹) with the principal components required for each range. The results showed over 95% accuracy. It is also suggested that any spectral range can be used to obtain a good predictive model for use in laboratory routine. The validation tests were successful, with an overall accuracy of 100% for all the spectral ranges analysed with the appropriate choice of PCs. The vibrational bands 2800 cm-¹ (lipids and fatty acids) and 1154, 1109 cm-¹ (carbohydrates) were found to correspond to the differences between the two species. Therefore, it can be concluded that FTIR and machine learning are effective in differentiating the two species. |
id |
UFMS_42db3d48eaaca79261290c78b6acf371 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/8513 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2024-03-10T20:08:00Z2024-03-10T20:08:00Z2024https://repositorio.ufms.br/handle/123456789/8513Lutzomyia longipalpis and Lutzomyia cruzi are two phlebotomine species in Brazil that are vectors of Leishmania infantum, the causative agent of visceral leishmaniasis. Lutzomyia longipalpis is found throughout the country, while Lutzomyia cruzi is only present in the Centre-West and Northeast regions. The females of both species are morphologically identical and cannot be differentiated. In Mato Grosso do Sul, both species, Lutzomyia longipalpis and Lutzomyia cruzi, are found in six municipalities where visceral leishmaniasis has been reported. It is important to taxonomically identify the species as the epidemiological profile can be influenced by the vector species. The longipalpis complex, which includes Lutzomyia longipalpis and other species, has been identified based on behavioural, biochemical and morphological evidence. To address this issue, alternative methods must be explored. Fourier Transform Infrared Spectroscopy (FTIR) is a technique that can characterize molecular bands through sound spectra without the need for prior sample preparation. It is commonly used in conjunction with machine learning (ML) by various groups. The objective of this study is to differentiate between female Lutzomyia longipalpis and Lutzomyia cruzi using FTIR and machine learning. A total of 120 female sand flies, 60 Lutzomyia cruzi and 60 Lutzomyia longipalpis, were analysed using a spectrometer in groups of four. The obtained spectra were analysed using multi-analysis and machine learning to characterise the species. The Linear SVM algorithm was used in three band ranges (4000 to 600 cm-¹; 3000 to 2800 cm-¹; 1800 to 800 cm-¹) with the principal components required for each range. The results showed over 95% accuracy. It is also suggested that any spectral range can be used to obtain a good predictive model for use in laboratory routine. The validation tests were successful, with an overall accuracy of 100% for all the spectral ranges analysed with the appropriate choice of PCs. The vibrational bands 2800 cm-¹ (lipids and fatty acids) and 1154, 1109 cm-¹ (carbohydrates) were found to correspond to the differences between the two species. Therefore, it can be concluded that FTIR and machine learning are effective in differentiating the two species.No Brasil as espécies de flebotomíneo Lutzomyia longipalpis e Lutzomyia cruzi são vetores de Leishmania infantum, agente etiológico da leishmaniose visceral. Lutzomyia longipalpis está presente em todas regiões do País, e Lutzomyia cruzi apenas no Centro-Oeste e Nordeste. As fêmeas das duas espécies não podem ser diferenciadas, pois são morfologicamente idênticas. Em Mato Grosso do Sul, ambas são encontradas em simpatria em seis municípios onde há notificações de leishmaniose visceral. A identificação taxonômica é necessária, pois o perfil epidemiológico pode ser influenciado pela espécie de vetor. Devido a evidências comportamentais, bioquímicas e morfológicas, há a existência de um complexo longipalpis cujas populações de Lutzomyia longipalpis e outras espécies estão incluídas, entre elas Lutzomyia cruzi. Diante do exposto é necessário buscar alternativas para minimizar esse problema utilizando-se métodos alternativos. Nesse sentido, a Espectroscopia de infravermelho por transformada de Fourier e fotoacústica (FTIR) é uma técnica que permite caracterizar bandas moleculares por meio de espectros sonoros sem a preparação prévia da amostra. É utilizada em diversos grupos em conjunto com machine learning (ML). O presente estudo tem como objetivo diferenciar fêmeas de Lutzomyia longipalpis e Lutzomyia cruzi por meio de FTIR e aprendizado de máquina. Um total de 120 fêmeas de Lutzomyia cruzi e Lutzomyia longipalpis de Corumbá e Aquidauana, respectivamente, foram processadas no espectrômetro em grupo de quatro. Após o processamento das amostras, os espectros obtidos foram analisados para a caracterização das espécies com multianálises e aprendizado de máquina. Utilizando-se o algoritmo SVM Linear nas três faixas de bandas (4000 a 600 cm-¹; 3000 a 2800 cm-¹; 1800 a 800 cm-¹) com componentes principais necessários para cada faixa, a porcentagem foi acima de 95% de acurácia. Além disso, sugere-se também, que qualquer faixa espetral pode ser utilizada para obter um bom modelo de previsão para utilização na rotina laboratorial. Os testes de validação foram bem sucedidos, com uma exatidão global de 100% para todas as faixas espectrais analisadas com a escolha adequada de PCs. As faixas vibracionais 2800 cm-¹ (lipídios e ácidos graxos) e 1154, 1109 cm-¹ (carboidratos) correspondem às diferenças entre as duas espécies. Portanto, pode-se concluir que FTIR e aprendizado de máquina são competentes para a diferenciação das duas espécies.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilLutzomya cruziLutzomya longipalpisespectroscopia de infravermelhoDIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHOinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAlessandra Gutierrez de OliveiraMATHEUS EUGÊNIO PORTO BARBOSAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDOCUMENTO MESTRADO MATHEUS EUGENIO PORTO BARBOSA - c (2).pdfDOCUMENTO MESTRADO MATHEUS EUGENIO PORTO BARBOSA - c (2).pdfapplication/pdf1576184https://repositorio.ufms.br/bitstream/123456789/8513/-1/DOCUMENTO%20MESTRADO%20MATHEUS%20EUGENIO%20PORTO%20BARBOSA%20-%20c%20%282%29.pdf97517c238861ce11c64f01ea626e55d9MD5-1123456789/85132024-03-10 16:08:00.797oai:repositorio.ufms.br:123456789/8513Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242024-03-10T20:08Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
title |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
spellingShingle |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO MATHEUS EUGÊNIO PORTO BARBOSA Lutzomya cruzi Lutzomya longipalpis espectroscopia de infravermelho |
title_short |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
title_full |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
title_fullStr |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
title_full_unstemmed |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
title_sort |
DIFERENCIAÇÃO DE FÊMEAS DE LUTZOMYIA CRUZI E LUTZOMYIA LONGIPALPIS (DIPTERA: PSYCHODIDAE: PHLEBOTOMINAE) POR ESPECTROSCOPIA DE INFRAVERMELHO |
author |
MATHEUS EUGÊNIO PORTO BARBOSA |
author_facet |
MATHEUS EUGÊNIO PORTO BARBOSA |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Alessandra Gutierrez de Oliveira |
dc.contributor.author.fl_str_mv |
MATHEUS EUGÊNIO PORTO BARBOSA |
contributor_str_mv |
Alessandra Gutierrez de Oliveira |
dc.subject.por.fl_str_mv |
Lutzomya cruzi Lutzomya longipalpis espectroscopia de infravermelho |
topic |
Lutzomya cruzi Lutzomya longipalpis espectroscopia de infravermelho |
description |
Lutzomyia longipalpis and Lutzomyia cruzi are two phlebotomine species in Brazil that are vectors of Leishmania infantum, the causative agent of visceral leishmaniasis. Lutzomyia longipalpis is found throughout the country, while Lutzomyia cruzi is only present in the Centre-West and Northeast regions. The females of both species are morphologically identical and cannot be differentiated. In Mato Grosso do Sul, both species, Lutzomyia longipalpis and Lutzomyia cruzi, are found in six municipalities where visceral leishmaniasis has been reported. It is important to taxonomically identify the species as the epidemiological profile can be influenced by the vector species. The longipalpis complex, which includes Lutzomyia longipalpis and other species, has been identified based on behavioural, biochemical and morphological evidence. To address this issue, alternative methods must be explored. Fourier Transform Infrared Spectroscopy (FTIR) is a technique that can characterize molecular bands through sound spectra without the need for prior sample preparation. It is commonly used in conjunction with machine learning (ML) by various groups. The objective of this study is to differentiate between female Lutzomyia longipalpis and Lutzomyia cruzi using FTIR and machine learning. A total of 120 female sand flies, 60 Lutzomyia cruzi and 60 Lutzomyia longipalpis, were analysed using a spectrometer in groups of four. The obtained spectra were analysed using multi-analysis and machine learning to characterise the species. The Linear SVM algorithm was used in three band ranges (4000 to 600 cm-¹; 3000 to 2800 cm-¹; 1800 to 800 cm-¹) with the principal components required for each range. The results showed over 95% accuracy. It is also suggested that any spectral range can be used to obtain a good predictive model for use in laboratory routine. The validation tests were successful, with an overall accuracy of 100% for all the spectral ranges analysed with the appropriate choice of PCs. The vibrational bands 2800 cm-¹ (lipids and fatty acids) and 1154, 1109 cm-¹ (carbohydrates) were found to correspond to the differences between the two species. Therefore, it can be concluded that FTIR and machine learning are effective in differentiating the two species. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-03-10T20:08:00Z |
dc.date.available.fl_str_mv |
2024-03-10T20:08:00Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/8513 |
url |
https://repositorio.ufms.br/handle/123456789/8513 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/8513/-1/DOCUMENTO%20MESTRADO%20MATHEUS%20EUGENIO%20PORTO%20BARBOSA%20-%20c%20%282%29.pdf |
bitstream.checksum.fl_str_mv |
97517c238861ce11c64f01ea626e55d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448039603568640 |