Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/4995 |
Resumo: | When considering the threats against biodiversity, biological invasion is an important element, as alien species alter the composition and functioning of the ecosystems, so much so that the invasion from exotic species is considered the top cause of global biodiversity loss. Considering how invasive species pose significant threats against local biodiversity, it’s necessary to develop technologies that allow the use, including for ecotoxicological tests, of native species. Dendrocephalus brasiliensis (Crustacea: Anostraca) is a species that presents economical potential, with high nutritional value, so important in aquaculture, as well as high sensibility to several toxic substances, which allows its use as a scientific tool in toxicity studies. Therefore, it’s important to study this species and develop new methodologies that could enable its use to the detriment of exotic species. Therefore, this thesis aimed to provide a new approach on how to perform hatching studies for Dendrocephalus brasiliensis species, evaluate the effects of using different mediums such as Dimethylsulfoxide (DMSO), Glycerol, Reconstituted (RW), and Natural water (NW) and their effects on the hatching rate; the effects of controlling/not the mediums pH, and the effect of saline buffers use over the cyst hatch. The results indicate the use of Natural and/or Reconstituted Water as a preferential medium for Dendrocephalus brasiliensis cultures, buffered (as a tool to provide hatching homogeneity) in a range of 7.3 to 8 (being 8 the recommended in the literature for the species), using cysts without previous dormancy break attempt (pre-treatment). Also, to automatize and facilitate cyst processing for Dendrocephalus brasiliensis using computer vision as a tool. To evaluate the viability of automating cyst recognition and counting using domain-specific object detection techniques based on computer vision. Then, we trained two state-of-the-art object detection methods, YOLOv3 (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural Networks), on the DBrasiliensis data set, which was also created for this study, to compare them under both cyst detection and counting tasks. We concluded that the proposed approach using YOLOv3 is adequate to detect and count Dendrocephalus brasiliensis cysts. The stated results and considerations provided by this study allowed us to provide important considerations that can be applied to improve Dendrocephalus brasiliensis studies and production. |
id |
UFMS_80fa93b63faed09b4574c61c2870c7a1 |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/4995 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2022-07-26T14:56:49Z2022-07-26T14:56:49Z2022https://repositorio.ufms.br/handle/123456789/4995When considering the threats against biodiversity, biological invasion is an important element, as alien species alter the composition and functioning of the ecosystems, so much so that the invasion from exotic species is considered the top cause of global biodiversity loss. Considering how invasive species pose significant threats against local biodiversity, it’s necessary to develop technologies that allow the use, including for ecotoxicological tests, of native species. Dendrocephalus brasiliensis (Crustacea: Anostraca) is a species that presents economical potential, with high nutritional value, so important in aquaculture, as well as high sensibility to several toxic substances, which allows its use as a scientific tool in toxicity studies. Therefore, it’s important to study this species and develop new methodologies that could enable its use to the detriment of exotic species. Therefore, this thesis aimed to provide a new approach on how to perform hatching studies for Dendrocephalus brasiliensis species, evaluate the effects of using different mediums such as Dimethylsulfoxide (DMSO), Glycerol, Reconstituted (RW), and Natural water (NW) and their effects on the hatching rate; the effects of controlling/not the mediums pH, and the effect of saline buffers use over the cyst hatch. The results indicate the use of Natural and/or Reconstituted Water as a preferential medium for Dendrocephalus brasiliensis cultures, buffered (as a tool to provide hatching homogeneity) in a range of 7.3 to 8 (being 8 the recommended in the literature for the species), using cysts without previous dormancy break attempt (pre-treatment). Also, to automatize and facilitate cyst processing for Dendrocephalus brasiliensis using computer vision as a tool. To evaluate the viability of automating cyst recognition and counting using domain-specific object detection techniques based on computer vision. Then, we trained two state-of-the-art object detection methods, YOLOv3 (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural Networks), on the DBrasiliensis data set, which was also created for this study, to compare them under both cyst detection and counting tasks. We concluded that the proposed approach using YOLOv3 is adequate to detect and count Dendrocephalus brasiliensis cysts. The stated results and considerations provided by this study allowed us to provide important considerations that can be applied to improve Dendrocephalus brasiliensis studies and production.A invasão biológica está entre os elementos mais importantes que ameaçam a biodiversidade, isso porque as espécies exóticas alteram a composição e o funcionamento dos ecossistemas, tanto que a invasão de espécies exóticas é considerada a principal causa da perda global de biodiversidade. Considerando como as espécies invasoras representam ameaças signifcativas à biodiversidade local, é necessário desenvolver tecnologias que permitam o uso, inclusive para testes ecotoxicológicos, de espécies nativas. Dendrocephalus brasiliensis (Crustacea: Anostraca) é uma espécie que apresenta potencial econômico, com alto valor nutricional tão importante na aquicultura, e alta sensibilidade a diversas substâncias tóxicas, o que permite seu uso como ferramenta científca em estudos de toxicidade. Portanto, é importante estudar esta espécie e desenvolver novas metodologias que possam viabilizar seu uso em detrimento de espécies exóticas. Assim, esta tese teve como objetivo fornecer uma nova abordagem de como realizar estudos de eclosão para espécies de Dendrocephalus brasiliensis. Avaliar os efeitos do uso de diferentes meios de cultivo, como soluções à base de Dimetilsulfóxido (DMSO), Glicerol, em comparação aos meios tradicionais como Água Natural (NW) e Reconstituída (RW), avaliando seus efeitos na taxa de eclosão; também os efeitos de realizar ou não o controle do pH dos meios, assim como, o efeito de tampões salinos sobre a eclosão dos cistos. Os resultados indicam o uso de Água Natural e/ou Reconstituída como meio preferencial para culturas de Dendrocephalus brasiliensis, com meio tamponado (apenas para favorecer a homogeneidade da eclosão) na faixa de 7,3 a 8 (sendo 8 o recomendado na literatura para a espécie), utilizando cistos sem tentativa prévia de quebra de dormência (pré-tratamento). Além disso, automatizar e facilitar o processamento de cistos de Dendrocephalus brasiliensis usando visão computacional como ferramenta. Avaliar a viabilidade de automatizar o reconhecimento e a contagem de cistos usando técnicas de detecção de objetos específcos de domínio com base em visão computacional. Em seguida, treinamos dois métodos de detecção de objetos de última geração, YOLOv3 (You Only Look Once) e Faster R-CNN (Regionbased Convolutional Neural Networks), no conjunto de dados DBrasiliensis, também criado para este estudo, para compará-los nas tarefas de detecção e contagem de cistos. Concluímos que a abordagem proposta usando YOLOv3 é adequada para detectar e contar cistos de Dendrocephalus brasiliensis. Os resultados, fornecidos por este estudo, nos permitiram oferecer considerações importantes que podem ser aplicadas para melhorar os estudos e a produção de Dendrocephalus brasiliensis.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilDendrocephalusDendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatmentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisWilliam Marcos da SilvaANGELICA CHRISTINA MELO NUNES ASTOLFIinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese_Angelica_Astolfi.pdfTese_Angelica_Astolfi.pdfapplication/pdf4264979https://repositorio.ufms.br/bitstream/123456789/4995/-1/Tese_Angelica_Astolfi.pdf29bffca8e9c917a713b6ff196dce5fabMD5-1123456789/49952022-07-26 10:56:50.484oai:repositorio.ufms.br:123456789/4995Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-07-26T14:56:50Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
title |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
spellingShingle |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments ANGELICA CHRISTINA MELO NUNES ASTOLFI Dendrocephalus |
title_short |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
title_full |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
title_fullStr |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
title_full_unstemmed |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
title_sort |
Dendrocephalus brasiliensis (Crustacea: Anostraca) hatching egg capacity in different water treatments |
author |
ANGELICA CHRISTINA MELO NUNES ASTOLFI |
author_facet |
ANGELICA CHRISTINA MELO NUNES ASTOLFI |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
William Marcos da Silva |
dc.contributor.author.fl_str_mv |
ANGELICA CHRISTINA MELO NUNES ASTOLFI |
contributor_str_mv |
William Marcos da Silva |
dc.subject.por.fl_str_mv |
Dendrocephalus |
topic |
Dendrocephalus |
description |
When considering the threats against biodiversity, biological invasion is an important element, as alien species alter the composition and functioning of the ecosystems, so much so that the invasion from exotic species is considered the top cause of global biodiversity loss. Considering how invasive species pose significant threats against local biodiversity, it’s necessary to develop technologies that allow the use, including for ecotoxicological tests, of native species. Dendrocephalus brasiliensis (Crustacea: Anostraca) is a species that presents economical potential, with high nutritional value, so important in aquaculture, as well as high sensibility to several toxic substances, which allows its use as a scientific tool in toxicity studies. Therefore, it’s important to study this species and develop new methodologies that could enable its use to the detriment of exotic species. Therefore, this thesis aimed to provide a new approach on how to perform hatching studies for Dendrocephalus brasiliensis species, evaluate the effects of using different mediums such as Dimethylsulfoxide (DMSO), Glycerol, Reconstituted (RW), and Natural water (NW) and their effects on the hatching rate; the effects of controlling/not the mediums pH, and the effect of saline buffers use over the cyst hatch. The results indicate the use of Natural and/or Reconstituted Water as a preferential medium for Dendrocephalus brasiliensis cultures, buffered (as a tool to provide hatching homogeneity) in a range of 7.3 to 8 (being 8 the recommended in the literature for the species), using cysts without previous dormancy break attempt (pre-treatment). Also, to automatize and facilitate cyst processing for Dendrocephalus brasiliensis using computer vision as a tool. To evaluate the viability of automating cyst recognition and counting using domain-specific object detection techniques based on computer vision. Then, we trained two state-of-the-art object detection methods, YOLOv3 (You Only Look Once) and Faster R-CNN (Region-based Convolutional Neural Networks), on the DBrasiliensis data set, which was also created for this study, to compare them under both cyst detection and counting tasks. We concluded that the proposed approach using YOLOv3 is adequate to detect and count Dendrocephalus brasiliensis cysts. The stated results and considerations provided by this study allowed us to provide important considerations that can be applied to improve Dendrocephalus brasiliensis studies and production. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-26T14:56:49Z |
dc.date.available.fl_str_mv |
2022-07-26T14:56:49Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/4995 |
url |
https://repositorio.ufms.br/handle/123456789/4995 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/4995/-1/Tese_Angelica_Astolfi.pdf |
bitstream.checksum.fl_str_mv |
29bffca8e9c917a713b6ff196dce5fab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448028774924288 |