Efeito Magnetocalórico em sistemas competitivos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMS |
Texto Completo: | https://repositorio.ufms.br/handle/123456789/8212 |
Resumo: | This work aims to study the main concepts for the understanding of the magnetocaloric effect (MCE) and to develop models to investigate this phenomenon in geometrically frustrated systems. This effect employs isothermal magnetization and adiabatic demagnetization processes with the purpose of inducing variations in temperature and magnetic entropy. Therefore, through magnetocaloric effect, magnetic refrigeration can be designed, an alternative that allows greater efficiency and less damage to the environment in relation to current refrigeration processes (steam cycle). However, to replace the vapor cycle cooling method with a system based on magnetocaloric materials, it is necessary to focus on magnetic materials with a high magnetocaloric effect. In this sense, frustrated magnetic systems have shown promise, due to their peculiar properties such as high entropy even at low temperatures. Thus, we propose to help clarify the relationship between the magnetocaloric effect and the frustration due to the geometry of the lattice. We applied the Ising spin model to two lattice configurations: the kagome lattice, which has geometrical frustration, and the hexagonal lattice, which does not. In both cases, we consider the formation of finite clusters in the presence of a magnetic field. The intra-cluster interactions were calculated via exact numeration, while the inter-cluster interactions were treated using self-consistent equations via mean-field theory with clusters. From the solutions obtained, we elaborate phase diagrams at low temperatures and extract thermodynamic quantities, such as magnetization, entropy and magnetocaloric effect, based on the high degeneracy fundamental states. We observed that in the kagomé lattice there is a notable isothermal variation in entropy for low-intensity magnetic fields, geometric frustration being the predominant factor behind this behavior. Nevertheless, in the hexagonal lattice, the absence of geometric frustration, no substantial magnetocaloric effects were observed. Therefore, we found that the kagome lattice demonstrates a considerable capacity to improve the efficiency and economic viability of the magnetic refrigeration process based on the high magnetocaloric effect present. |
id |
UFMS_8c37249d9a7159506cadb26c4bc4227b |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/8212 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
2124 |
spelling |
2023-12-20T20:59:11Z2023-12-20T20:59:11Z2023https://repositorio.ufms.br/handle/123456789/8212This work aims to study the main concepts for the understanding of the magnetocaloric effect (MCE) and to develop models to investigate this phenomenon in geometrically frustrated systems. This effect employs isothermal magnetization and adiabatic demagnetization processes with the purpose of inducing variations in temperature and magnetic entropy. Therefore, through magnetocaloric effect, magnetic refrigeration can be designed, an alternative that allows greater efficiency and less damage to the environment in relation to current refrigeration processes (steam cycle). However, to replace the vapor cycle cooling method with a system based on magnetocaloric materials, it is necessary to focus on magnetic materials with a high magnetocaloric effect. In this sense, frustrated magnetic systems have shown promise, due to their peculiar properties such as high entropy even at low temperatures. Thus, we propose to help clarify the relationship between the magnetocaloric effect and the frustration due to the geometry of the lattice. We applied the Ising spin model to two lattice configurations: the kagome lattice, which has geometrical frustration, and the hexagonal lattice, which does not. In both cases, we consider the formation of finite clusters in the presence of a magnetic field. The intra-cluster interactions were calculated via exact numeration, while the inter-cluster interactions were treated using self-consistent equations via mean-field theory with clusters. From the solutions obtained, we elaborate phase diagrams at low temperatures and extract thermodynamic quantities, such as magnetization, entropy and magnetocaloric effect, based on the high degeneracy fundamental states. We observed that in the kagomé lattice there is a notable isothermal variation in entropy for low-intensity magnetic fields, geometric frustration being the predominant factor behind this behavior. Nevertheless, in the hexagonal lattice, the absence of geometric frustration, no substantial magnetocaloric effects were observed. Therefore, we found that the kagome lattice demonstrates a considerable capacity to improve the efficiency and economic viability of the magnetic refrigeration process based on the high magnetocaloric effect present.Este trabalho visa estudar os conceitos principais para o entendimento do efeito magnetocalórico (EMC) e desenvolver modelos para investigar esse fenômeno em sistemas geometricamente frustrados. Este efeito utiliza processos de magnetização isotérmica e desmagnetização adiabática com a finalidade de induzir variações na temperatura e entropia magnética. Logo, por meio do efeito magnetocalórico pode ser concebida a refrigeração magnética, uma alternativa que permite uma maior eficiência e menor dano ao meio ambiente em relação aos processos de refrigeração atuais (ciclo de vapor). Portanto, um dos aspectos que esta pesquisa pretende avaliar diz respeito aos mecanismos capazes de ampliar e potencializar o efeito magnetocalórico. Neste sentido, sistemas magnéticos frustrados têm se mostrado promissores, devido às suas propriedades peculiares como alta entropia mesmo em temperaturas baixas. Sob esse aspecto, propomos contribuir no esclarecimento da relação entre efeito magnetocalórico e frustração vinda da geometria de rede. Aplicamos o modelo de spins de Ising em duas configurações de rede: a rede kagomé, que apresenta frustração geométrica, e a rede hexagonal, que não apresenta essa característica. Em ambos os casos, consideramos a formação de clusters finitos na presença de um campo magnético. As interações intra-cluster foram calculadas via numeração exata, enquanto as interações inter-cluster foram tratadas mediante equações autoconsistentes por meio da teoria de campo médio com clusters. A partir das soluções obtidas, elaboramos diagramas de fase em baixas temperaturas e extraímos as quantidades termodinâmicas, como magnetização, entropia e efeito magnetocalórico, com base na elevada degenerescência dos estados fundamentais. Observamos que na rede kagomé ocorre uma notável variação isotérmica da entropia para campos magnéticos de baixa intensidade, sendo a frustração geométrica o fator predominante por trás desse comportamento. Contudo, na rede hexagonal, com ausência de frustração geométrica, não foram observados efeitos magnetocalóricos substanciais. Logo, constatamos que a rede kagomé demonstra uma considerável capacidade para aprimorar a eficiência e a viabilidade econômica do processo de refrigeração magnética fundamentado no elevado efeito magnetocalórico presente.Fundação Universidade Federal de Mato Grosso do SulUFMSCiências Exatas e da TerraEfeito MagnetocalóricoKagoméRefrigeração MagnéticaFrustração GeométricaModelo de IsingEfeito Magnetocalórico em sistemas competitivosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisFABIO MALLMANN ZIMMERCARLOS HENRIQUE DUARTE BATISTAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINAL8322.pdf8322.pdfapplication/pdf9692807https://repositorio.ufms.br/bitstream/123456789/8212/-1/8322.pdffbf538e11ec174d394ba3e6c98501018MD5-1123456789/82122023-12-20 16:59:12.03oai:repositorio.ufms.br:123456789/8212Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242023-12-20T20:59:12Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Efeito Magnetocalórico em sistemas competitivos |
title |
Efeito Magnetocalórico em sistemas competitivos |
spellingShingle |
Efeito Magnetocalórico em sistemas competitivos CARLOS HENRIQUE DUARTE BATISTA Efeito Magnetocalórico Kagomé Refrigeração Magnética Frustração Geométrica Modelo de Ising Ciências Exatas e da Terra |
title_short |
Efeito Magnetocalórico em sistemas competitivos |
title_full |
Efeito Magnetocalórico em sistemas competitivos |
title_fullStr |
Efeito Magnetocalórico em sistemas competitivos |
title_full_unstemmed |
Efeito Magnetocalórico em sistemas competitivos |
title_sort |
Efeito Magnetocalórico em sistemas competitivos |
author |
CARLOS HENRIQUE DUARTE BATISTA |
author_facet |
CARLOS HENRIQUE DUARTE BATISTA |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
FABIO MALLMANN ZIMMER |
dc.contributor.author.fl_str_mv |
CARLOS HENRIQUE DUARTE BATISTA |
contributor_str_mv |
FABIO MALLMANN ZIMMER |
dc.subject.por.fl_str_mv |
Efeito Magnetocalórico Kagomé Refrigeração Magnética Frustração Geométrica Modelo de Ising |
topic |
Efeito Magnetocalórico Kagomé Refrigeração Magnética Frustração Geométrica Modelo de Ising Ciências Exatas e da Terra |
dc.subject.classification.pt_BR.fl_str_mv |
Ciências Exatas e da Terra |
description |
This work aims to study the main concepts for the understanding of the magnetocaloric effect (MCE) and to develop models to investigate this phenomenon in geometrically frustrated systems. This effect employs isothermal magnetization and adiabatic demagnetization processes with the purpose of inducing variations in temperature and magnetic entropy. Therefore, through magnetocaloric effect, magnetic refrigeration can be designed, an alternative that allows greater efficiency and less damage to the environment in relation to current refrigeration processes (steam cycle). However, to replace the vapor cycle cooling method with a system based on magnetocaloric materials, it is necessary to focus on magnetic materials with a high magnetocaloric effect. In this sense, frustrated magnetic systems have shown promise, due to their peculiar properties such as high entropy even at low temperatures. Thus, we propose to help clarify the relationship between the magnetocaloric effect and the frustration due to the geometry of the lattice. We applied the Ising spin model to two lattice configurations: the kagome lattice, which has geometrical frustration, and the hexagonal lattice, which does not. In both cases, we consider the formation of finite clusters in the presence of a magnetic field. The intra-cluster interactions were calculated via exact numeration, while the inter-cluster interactions were treated using self-consistent equations via mean-field theory with clusters. From the solutions obtained, we elaborate phase diagrams at low temperatures and extract thermodynamic quantities, such as magnetization, entropy and magnetocaloric effect, based on the high degeneracy fundamental states. We observed that in the kagomé lattice there is a notable isothermal variation in entropy for low-intensity magnetic fields, geometric frustration being the predominant factor behind this behavior. Nevertheless, in the hexagonal lattice, the absence of geometric frustration, no substantial magnetocaloric effects were observed. Therefore, we found that the kagome lattice demonstrates a considerable capacity to improve the efficiency and economic viability of the magnetic refrigeration process based on the high magnetocaloric effect present. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-12-20T20:59:11Z |
dc.date.available.fl_str_mv |
2023-12-20T20:59:11Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/8212 |
url |
https://repositorio.ufms.br/handle/123456789/8212 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.pt_BR.fl_str_mv |
|
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/8212/-1/8322.pdf |
bitstream.checksum.fl_str_mv |
fbf538e11ec174d394ba3e6c98501018 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1815448058319601664 |