INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Reamec |
Texto Completo: | https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901 |
Resumo: | This theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. |
id |
UFMT-5_3add2d160a36cbe501bd71ddb35f8160 |
---|---|
oai_identifier_str |
oai:periodicoscientificos.ufmt.br:article/10901 |
network_acronym_str |
UFMT-5 |
network_name_str |
Revista Reamec |
repository_id_str |
|
spelling |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENAINVENÇÃO OU CRIAÇÃO MATEMÁTICA E OS FENÔMENOS DIDÁTICOSInvenção MatemáticaSala de aula de MatemáticaTransposição DidáticaAprendizagem autônomaMathematical InventionMathematics classroomDidactic TranspositionAutonomous learningThis theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. Este ensaio teórico tem por objetivo tratar da invenção matemática discutida por Jacques Hadamard e relacioná-lo à prática docente, a partir dos fenômenos didáticos existentes. Justifica esta pesquisa, o fato de que se a matemática é uma invenção ou criação, e este pressuposto precisa estar evidenciado nos objetivos do ensino, pois, em geral, os docentes almejam que os estudantes aprendam conteúdos clássicos e prontos para serem apropriados por eles. Na parte 2 do texto, apresenta-se o conceito definido por Hadamard sobre a invenção matemática, descrevendo as suas quatro fases: a preparação, a incubação, a iluminação e a verificação; e analisar, na perspectiva do autor, o papel do inconsciente na iluminação matemática, apoiado, sobretudo, no testemunho de Poincaré. Na parte 3, trata-se dos fenômenos didáticos que ocorrem na sala de aula de matemática (transposição e contrato) e seus papéis para a aprendizagem autônoma do aluno. A metodologia da pesquisa é bibliográfica e documental. Temos como principal contribuição a influência exercida pelos fenômenos, evidenciando que não basta adequar o saber a ser ensinado, mas também de verificar o que é efetivamente aprendido. A conclusão destaca que a aprendizagem, como fenômeno que se dá em primeira pessoa, exige a autonomia do aluno e, consequentemente, é necessário estimular seu potencial de criatividade que, ao invés de se contentar de se apropriar dos conteúdos produzidos por especialistas, procure construir seu próprio saber matemático, incentivando-o a ser, por sua vez, um inventor ou criador de soluções próprias.Universidade Federal de Mato Grosso (UFMT)2020-10-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/ziphttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/1090110.26571/reamec.v8i3.10901 REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 8 Núm. 3 (2020): Setembro a dezembro de 2020 ; 592-612REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 8 n. 3 (2020): Setembro a dezembro de 2020 ; 592-612REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 8 No. 3 (2020): Setembro a dezembro de 2020 ; 592-6122318-6674reponame:Revista Reamecinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMTporhttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/7687https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8879https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8878https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8880https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8741https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8881Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemáticahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMenezes, Marcus Bessa deMoser, Alvino2021-01-02T19:18:11Zoai:periodicoscientificos.ufmt.br:article/10901Revistahttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/indexPUBhttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/oairevistareamec@gmail.com||2318-66742318-6674opendoar:2021-01-02T19:18:11Revista Reamec - Universidade Federal de Mato Grosso (UFMT)false |
dc.title.none.fl_str_mv |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA INVENÇÃO OU CRIAÇÃO MATEMÁTICA E OS FENÔMENOS DIDÁTICOS |
title |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
spellingShingle |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA Menezes, Marcus Bessa de Invenção Matemática Sala de aula de Matemática Transposição Didática Aprendizagem autônoma Mathematical Invention Mathematics classroom Didactic Transposition Autonomous learning |
title_short |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
title_full |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
title_fullStr |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
title_full_unstemmed |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
title_sort |
INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA |
author |
Menezes, Marcus Bessa de |
author_facet |
Menezes, Marcus Bessa de Moser, Alvino |
author_role |
author |
author2 |
Moser, Alvino |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Menezes, Marcus Bessa de Moser, Alvino |
dc.subject.por.fl_str_mv |
Invenção Matemática Sala de aula de Matemática Transposição Didática Aprendizagem autônoma Mathematical Invention Mathematics classroom Didactic Transposition Autonomous learning |
topic |
Invenção Matemática Sala de aula de Matemática Transposição Didática Aprendizagem autônoma Mathematical Invention Mathematics classroom Didactic Transposition Autonomous learning |
description |
This theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901 10.26571/reamec.v8i3.10901 |
url |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901 |
identifier_str_mv |
10.26571/reamec.v8i3.10901 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/7687 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8879 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8878 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8880 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8741 https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8881 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemática https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemática https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/zip |
dc.publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso (UFMT) |
publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso (UFMT) |
dc.source.none.fl_str_mv |
REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 8 Núm. 3 (2020): Setembro a dezembro de 2020 ; 592-612 REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 8 n. 3 (2020): Setembro a dezembro de 2020 ; 592-612 REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 8 No. 3 (2020): Setembro a dezembro de 2020 ; 592-612 2318-6674 reponame:Revista Reamec instname:Universidade Federal de Mato Grosso (UFMT) instacron:UFMT |
instname_str |
Universidade Federal de Mato Grosso (UFMT) |
instacron_str |
UFMT |
institution |
UFMT |
reponame_str |
Revista Reamec |
collection |
Revista Reamec |
repository.name.fl_str_mv |
Revista Reamec - Universidade Federal de Mato Grosso (UFMT) |
repository.mail.fl_str_mv |
revistareamec@gmail.com|| |
_version_ |
1797174816031113216 |