INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA

Detalhes bibliográficos
Autor(a) principal: Menezes, Marcus Bessa de
Data de Publicação: 2020
Outros Autores: Moser, Alvino
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Reamec
Texto Completo: https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901
Resumo: This theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. 
id UFMT-5_3add2d160a36cbe501bd71ddb35f8160
oai_identifier_str oai:periodicoscientificos.ufmt.br:article/10901
network_acronym_str UFMT-5
network_name_str Revista Reamec
repository_id_str
spelling INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENAINVENÇÃO OU CRIAÇÃO MATEMÁTICA E OS FENÔMENOS DIDÁTICOSInvenção MatemáticaSala de aula de MatemáticaTransposição DidáticaAprendizagem autônomaMathematical InventionMathematics classroomDidactic TranspositionAutonomous learningThis theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. Este ensaio teórico tem por objetivo tratar da invenção matemática discutida por Jacques Hadamard e relacioná-lo à prática docente, a partir dos fenômenos didáticos existentes. Justifica esta pesquisa, o fato de que se a matemática é uma invenção ou criação, e este pressuposto precisa estar evidenciado nos objetivos do ensino, pois, em geral, os docentes almejam que os estudantes aprendam conteúdos clássicos e prontos para serem apropriados por eles. Na parte 2 do texto, apresenta-se o conceito definido por Hadamard sobre a invenção matemática, descrevendo as suas quatro fases: a preparação, a incubação, a iluminação e a verificação; e analisar, na perspectiva do autor, o papel do inconsciente na iluminação matemática, apoiado, sobretudo, no testemunho de Poincaré. Na parte 3, trata-se dos fenômenos didáticos que ocorrem na sala de aula de matemática (transposição e contrato) e seus papéis para a aprendizagem autônoma do aluno. A metodologia da pesquisa é bibliográfica e documental. Temos como principal contribuição a influência exercida pelos fenômenos, evidenciando que não basta adequar o saber a ser ensinado, mas também de verificar o que é efetivamente aprendido. A conclusão destaca que a aprendizagem, como fenômeno que se dá em primeira pessoa, exige a autonomia do aluno e, consequentemente, é necessário estimular seu potencial de criatividade que, ao invés de se contentar de se apropriar dos conteúdos produzidos por especialistas, procure construir seu próprio saber matemático, incentivando-o a ser, por sua vez, um inventor ou criador de soluções próprias.Universidade Federal de Mato Grosso (UFMT)2020-10-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/ziphttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/1090110.26571/reamec.v8i3.10901 REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 8 Núm. 3 (2020): Setembro a dezembro de 2020 ; 592-612REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 8 n. 3 (2020): Setembro a dezembro de 2020 ; 592-612REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 8 No. 3 (2020): Setembro a dezembro de 2020 ; 592-6122318-6674reponame:Revista Reamecinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMTporhttps://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/7687https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8879https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8878https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8880https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8741https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8881Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemáticahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMenezes, Marcus Bessa deMoser, Alvino2021-01-02T19:18:11Zoai:periodicoscientificos.ufmt.br:article/10901Revistahttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/indexPUBhttp://periodicoscientificos.ufmt.br/ojs/index.php/reamec/oairevistareamec@gmail.com||2318-66742318-6674opendoar:2021-01-02T19:18:11Revista Reamec - Universidade Federal de Mato Grosso (UFMT)false
dc.title.none.fl_str_mv INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
INVENÇÃO OU CRIAÇÃO MATEMÁTICA E OS FENÔMENOS DIDÁTICOS
title INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
spellingShingle INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
Menezes, Marcus Bessa de
Invenção Matemática
Sala de aula de Matemática
Transposição Didática
Aprendizagem autônoma
Mathematical Invention
Mathematics classroom
Didactic Transposition
Autonomous learning
title_short INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
title_full INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
title_fullStr INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
title_full_unstemmed INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
title_sort INVENTION OR MATHEMATICAL CREATION AND DIDACTIC PHENOMENA
author Menezes, Marcus Bessa de
author_facet Menezes, Marcus Bessa de
Moser, Alvino
author_role author
author2 Moser, Alvino
author2_role author
dc.contributor.author.fl_str_mv Menezes, Marcus Bessa de
Moser, Alvino
dc.subject.por.fl_str_mv Invenção Matemática
Sala de aula de Matemática
Transposição Didática
Aprendizagem autônoma
Mathematical Invention
Mathematics classroom
Didactic Transposition
Autonomous learning
topic Invenção Matemática
Sala de aula de Matemática
Transposição Didática
Aprendizagem autônoma
Mathematical Invention
Mathematics classroom
Didactic Transposition
Autonomous learning
description This theoretical essay aims to address the mathematical invention discussed by Jacques Hadamard and to relate it to teaching practice, based on existing didactic phenomena. This research justifies the fact that if mathematics is an invention or creation, and this assumption needs to be evidenced in the teaching objectives, since, in general, the teachers want the students to learn classical contents and ready to be appropriated by them. In part 2, of the text, Hadamard's concept of mathematical invention is presented, describing its four phases: preparation, incubation, lighting and verification; and to analyze, in the author's perspective, the role of the unconscious in mathematical illumination, supported, above all, by Poincaré's testimony. In part 3, it deals with the didactic phenomena that occur in the mathematics classroom (transposition and contract) and their roles for the student's autonomous learning. The research methodology is bibliographic and documentary. We have as main contribution the influence exerted by the phenomena, showing that it is not enough to adapt the knowledge to be taught, but also to verify what is effectively learned. The conclusion highlights that learning, as a phenomenon that takes place in the first person, requires the student's autonomy and, consequently, it is necessary to stimulate their potential for creativity which, instead of being content to appropriate the contents produced by specialists, seeks to build their own mathematical knowledge, encouraging him to be, in turn, an inventor or creator of his own solutions. 
publishDate 2020
dc.date.none.fl_str_mv 2020-10-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901
10.26571/reamec.v8i3.10901
url https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901
identifier_str_mv 10.26571/reamec.v8i3.10901
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/7687
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8879
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8878
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8880
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8741
https://periodicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/10901/8881
dc.rights.driver.fl_str_mv Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemática
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 REAMEC - Rede Amazônica de Educação em Ciências e Matemática
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/zip
dc.publisher.none.fl_str_mv Universidade Federal de Mato Grosso (UFMT)
publisher.none.fl_str_mv Universidade Federal de Mato Grosso (UFMT)
dc.source.none.fl_str_mv REAMEC - Red Amazónica de Educación en Ciencias y Matemáticas; Vol. 8 Núm. 3 (2020): Setembro a dezembro de 2020 ; 592-612
REAMEC - Rede Amazônica de Educação em Ciências e Matemática; v. 8 n. 3 (2020): Setembro a dezembro de 2020 ; 592-612
REAMEC Journal - Amazonian Network of Mathematical Education; Vol. 8 No. 3 (2020): Setembro a dezembro de 2020 ; 592-612
2318-6674
reponame:Revista Reamec
instname:Universidade Federal de Mato Grosso (UFMT)
instacron:UFMT
instname_str Universidade Federal de Mato Grosso (UFMT)
instacron_str UFMT
institution UFMT
reponame_str Revista Reamec
collection Revista Reamec
repository.name.fl_str_mv Revista Reamec - Universidade Federal de Mato Grosso (UFMT)
repository.mail.fl_str_mv revistareamec@gmail.com||
_version_ 1797174816031113216