O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFMT |
Texto Completo: | http://ri.ufmt.br/handle/1/5875 |
Resumo: | Paying attention to the student's actions when facing situations that corroborate the process of building geometric concepts is extremely important. This posture favors the organization and/or reorganization of the teacher's activities and mediations, regarding the promotion of the acquisition of mathematical knowledge gathered by the situations. This study, constructed from a qualitative approach, along the lines of the research participants, seeks to contribute to the teaching of Geometry, through research anchored in the Model of the Development of Geometric Thinking of the van Hiele couple (van Hiele's Model), and in the Theory of Conceptual Fields (CBT) by Gérard Vergnaud. From this search emerges the following research question: in what terms are situations in the conceptual field of polyhedrons: prisms and pyramids, elaborated in line with the levels of Van Hiele's Model of the Development of Geometric Thought, contribute to the evocation and revelation of concepts and theorems- inaction, announced by Gérard Vergnaud, in the Theory of Conceptual Fields? Faced with this research question, the objective is to analyze external representations due to mental operations performed by students during the construction process of their proposed solutions to situations in the conceptual field of polyhedra: prisms and pyramids, which allow the identification and enunciation of operative invariants: concepts-in-action and theorems-in-action. The 12 (twelve) research participants are third-grade high school students at IFPA/Campus Santarém, and the data collection instruments adopted are questionnaires; interviews; notes; interventions based on situations from the conceptual field of polyhedrons (prisms and pyramids); videos, and audio produced during the execution of activities. The collected data were qualitatively analyzed in the light of the theories that constitute the theoretical framework of this research: Van Hiele's Model and the Theory of Conceptual Fields, through the identification, enunciation, and discussion of the operative invariants recorded by the students' actions on situations constructed for the van Hiele's first three levels (N0 - Visualization, N1 - Analysis and N2 - Informal Deduction). The analyses show that, initially, the participant’s level of understanding was visual and, despite the need for more situations that allow for discussion, expansion, deepening, and, consequently, understanding of the conceptual field under study, there was an advance in understanding up to N1. N2 was not fully achieved by any participant, confirming that the conceptualization process of geometric concepts does not happen in a brief period. It is noteworthy that the teaching strategy built based on the complementarity between the van Hiele Model and the TCC, in addition to indicating how geometric concepts were conceived over the time of school training, provided moments of reflection for the students, who became aware of the importance of their prior knowledge for the construction of new concepts, and of the teacher (researcher) who, based on the analyses, promoted (re)structuring of activities, aiming at greater interaction among students. This research proved the thesis: situations in the conceptual field of polyhedrons (prisms and pyramids), consistent with van Hiele's Levels of Development of Geometric Thinking, favor actions that lead to student records, anchored in operative invariants (concepts-in-action and theorems-in-action) and allow the teacher to identify, in the representations (conscious or unconscious) expressed by the students, these operational invariants that can contribute to a better evaluation of the conceptualization process of this conceptual field. |
id |
UFMT_8b90819be1080d123e11103955274f6e |
---|---|
oai_identifier_str |
oai:localhost:1/5875 |
network_acronym_str |
UFMT |
network_name_str |
Repositório Institucional da UFMT |
repository_id_str |
|
spelling |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmideEnsino de geometriaPensamento geométricoTeorias de aprendizagemCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICATeaching geometryGeometric thinkingLearning theoriesPaying attention to the student's actions when facing situations that corroborate the process of building geometric concepts is extremely important. This posture favors the organization and/or reorganization of the teacher's activities and mediations, regarding the promotion of the acquisition of mathematical knowledge gathered by the situations. This study, constructed from a qualitative approach, along the lines of the research participants, seeks to contribute to the teaching of Geometry, through research anchored in the Model of the Development of Geometric Thinking of the van Hiele couple (van Hiele's Model), and in the Theory of Conceptual Fields (CBT) by Gérard Vergnaud. From this search emerges the following research question: in what terms are situations in the conceptual field of polyhedrons: prisms and pyramids, elaborated in line with the levels of Van Hiele's Model of the Development of Geometric Thought, contribute to the evocation and revelation of concepts and theorems- inaction, announced by Gérard Vergnaud, in the Theory of Conceptual Fields? Faced with this research question, the objective is to analyze external representations due to mental operations performed by students during the construction process of their proposed solutions to situations in the conceptual field of polyhedra: prisms and pyramids, which allow the identification and enunciation of operative invariants: concepts-in-action and theorems-in-action. The 12 (twelve) research participants are third-grade high school students at IFPA/Campus Santarém, and the data collection instruments adopted are questionnaires; interviews; notes; interventions based on situations from the conceptual field of polyhedrons (prisms and pyramids); videos, and audio produced during the execution of activities. The collected data were qualitatively analyzed in the light of the theories that constitute the theoretical framework of this research: Van Hiele's Model and the Theory of Conceptual Fields, through the identification, enunciation, and discussion of the operative invariants recorded by the students' actions on situations constructed for the van Hiele's first three levels (N0 - Visualization, N1 - Analysis and N2 - Informal Deduction). The analyses show that, initially, the participant’s level of understanding was visual and, despite the need for more situations that allow for discussion, expansion, deepening, and, consequently, understanding of the conceptual field under study, there was an advance in understanding up to N1. N2 was not fully achieved by any participant, confirming that the conceptualization process of geometric concepts does not happen in a brief period. It is noteworthy that the teaching strategy built based on the complementarity between the van Hiele Model and the TCC, in addition to indicating how geometric concepts were conceived over the time of school training, provided moments of reflection for the students, who became aware of the importance of their prior knowledge for the construction of new concepts, and of the teacher (researcher) who, based on the analyses, promoted (re)structuring of activities, aiming at greater interaction among students. This research proved the thesis: situations in the conceptual field of polyhedrons (prisms and pyramids), consistent with van Hiele's Levels of Development of Geometric Thinking, favor actions that lead to student records, anchored in operative invariants (concepts-in-action and theorems-in-action) and allow the teacher to identify, in the representations (conscious or unconscious) expressed by the students, these operational invariants that can contribute to a better evaluation of the conceptualization process of this conceptual field.Atentar às ações do aluno no enfrentamento de situações que corroboram para o processo de construção de conceitos geométricos, é importantíssimo. Essa postura favorece a organização e/ou reorganização das atividades e mediações do professor, no sentido da promoção da aquisição do conhecimento matemático reunido pelas situações. Este estudo, construído a partir de uma abordagem qualitativa, aos moldes da pesquisa participante, busca contribuir com o ensino de Geometria, por meio de pesquisa ancorada no Modelo do Desenvolvimento do Pensamento Geométrico do casal van Hiele (Modelo de van Hiele), e na Teoria dos Campos Conceituais (TCC) de Gérard Vergnaud. Dessa busca emerge a seguinte questão de pesquisa: em que termos situações do campo conceitual dos poliedros: prismas e pirâmides, elaboradas em consonância com os níveis do Modelo do Desenvolvimento do Pensamento Geométrico de van Hiele, contribuem à evocação e revelação de conceitos e teoremas-em-ação, anunciados por Gérard Vergnaud, na Teoria dos Campos Conceituais? Frente a essa questão de pesquisa, objetiva-se analisar representações externadas em decorrência de operações mentais executadas por alunos no decurso do processo de construção das suas propostas de solução às situações do campo conceitual dos poliedros: prismas e pirâmides, que possibilitem a identificação e enunciação de invariantes operatórios: conceitos-em-ação e teoremas-em-ação. Os 12 (doze) participantes da pesquisa são alunos da 3ª série do Ensino Médio do IFPA/Campus Santarém e os instrumentos de coleta de dados adotados são: questionário; entrevista; observação; intervenção baseada em situações do campo conceitual dos poliedros (prismas e pirâmides); vídeos e áudios produzidos durante a execução das atividades. Os dados coletados foram analisados qualitativamente à luz das teorias que compõem o arcabouço teórico desta pesquisa: Modelo de van Hiele e a Teoria dos Campos Conceituais, por meio da identificação, enunciação e discussão dos invariantes operatórios registrados pelas ações dos alunos sobre situações construídas para os três primeiros níveis de van Hiele (N0 - Visualização, N1 - Análise e N2 - Dedução Informal). As análises evidenciam que, inicialmente, o nível de compreensão dos participantes era o visual e, apesar da necessidade de mais situações que possibilitem discussão, ampliação, aprofundamento e, consequentemente, domínio do campo conceitual em estudo, registrou-se avanço de compreensão até o N1. O N2 não foi plenamente alcançado por nenhum participante, confirmando que o processo de conceitualização de conceitos geométricos não acontece em um curto espaço de tempo. Destaca-se que estratégia de ensino construída com base na complementaridade entre o Modelo de van Hiele e a TCC, além de indicar como os conceitos geométricos foram concebidos ao longo do tempo de formação escolar, propiciou momentos de reflexão dos alunos, que tomaram consciência da importância dos seus conhecimentos prévios para construção de novos conceitos, e do professor (pesquisador) que, com base nas análises, promoveu (re)estruturação das atividades, visando maior interação dos alunos. Esta pesquisa provou a tese: situações do campo conceitual dos poliedros (prismas e pirâmides), coerentes com os Níveis do Desenvolvimento do Pensamento Geométrico de van Hiele, favorecem ações que levam a registros dos alunos, ancorados em invariantes operatórios (conceitos-em-ação e teoremas-em-ação) e oportunizam ao professor identificar, nas representações (conscientes ou inconscientes) externadas pelos alunos, esses invariantes operatórios que podem contribuir para melhor avaliar o processo de conceitualização desse campo conceitual.Universidade Federal de Mato GrossoBrasilInstituto de Ciências Exatas e da Terra (ICET)UFMT CUC - CuiabáPrograma de Pós-Graduação em Educação em Ciências e Matemática - PPGECEMSilva, Francisco Hermes Santos dahttp://lattes.cnpq.br/3912906225739008Silva, Francisco Hermes Santos da080.651.282-20http://lattes.cnpq.br/3912906225739008Moreira, Marco Antônio006.927.430-49.080.651.282-20Mafra, José Ricardo e Souza442.870.542-53http://lattes.cnpq.br/0259347290921771Mancuso, Sebastián020.486.847-50http://lattes.cnpq.br/3941230416605264Silva, Reginaldo da157.801.802-10http://lattes.cnpq.br/5156504609198449Santos, Rudinei Alves dos2024-09-04T15:27:30Z2023-02-142024-09-04T15:27:30Z2023-01-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSANTOS, Rudinei Alves dos. O modelo de Van Hiele e a teoria dos campos conceituais: complementaridade na conceitualização de prisma e pirâmide. 2023. 330 f. Tese (Doutorado em Educação em Ciências e Matemática) - Universidade Federal de Mato Grosso, Instituto de Ciências Exatas e da Terra, Cuiabá, 2023.http://ri.ufmt.br/handle/1/5875porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMTinstname:Universidade Federal de Mato Grosso (UFMT)instacron:UFMT2024-09-06T07:01:50Zoai:localhost:1/5875Repositório InstitucionalPUBhttp://ri.ufmt.br/oai/requestjordanbiblio@gmail.comopendoar:2024-09-06T07:01:50Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT)false |
dc.title.none.fl_str_mv |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
title |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
spellingShingle |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide Santos, Rudinei Alves dos Ensino de geometria Pensamento geométrico Teorias de aprendizagem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Teaching geometry Geometric thinking Learning theories |
title_short |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
title_full |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
title_fullStr |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
title_full_unstemmed |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
title_sort |
O modelo de Van Hiele e a teoria dos campos conceituais : complementaridade na conceitualização de prisma e pirâmide |
author |
Santos, Rudinei Alves dos |
author_facet |
Santos, Rudinei Alves dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Francisco Hermes Santos da http://lattes.cnpq.br/3912906225739008 Silva, Francisco Hermes Santos da 080.651.282-20 http://lattes.cnpq.br/3912906225739008 Moreira, Marco Antônio 006.927.430-49 . 080.651.282-20 Mafra, José Ricardo e Souza 442.870.542-53 http://lattes.cnpq.br/0259347290921771 Mancuso, Sebastián 020.486.847-50 http://lattes.cnpq.br/3941230416605264 Silva, Reginaldo da 157.801.802-10 http://lattes.cnpq.br/5156504609198449 |
dc.contributor.author.fl_str_mv |
Santos, Rudinei Alves dos |
dc.subject.por.fl_str_mv |
Ensino de geometria Pensamento geométrico Teorias de aprendizagem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Teaching geometry Geometric thinking Learning theories |
topic |
Ensino de geometria Pensamento geométrico Teorias de aprendizagem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Teaching geometry Geometric thinking Learning theories |
description |
Paying attention to the student's actions when facing situations that corroborate the process of building geometric concepts is extremely important. This posture favors the organization and/or reorganization of the teacher's activities and mediations, regarding the promotion of the acquisition of mathematical knowledge gathered by the situations. This study, constructed from a qualitative approach, along the lines of the research participants, seeks to contribute to the teaching of Geometry, through research anchored in the Model of the Development of Geometric Thinking of the van Hiele couple (van Hiele's Model), and in the Theory of Conceptual Fields (CBT) by Gérard Vergnaud. From this search emerges the following research question: in what terms are situations in the conceptual field of polyhedrons: prisms and pyramids, elaborated in line with the levels of Van Hiele's Model of the Development of Geometric Thought, contribute to the evocation and revelation of concepts and theorems- inaction, announced by Gérard Vergnaud, in the Theory of Conceptual Fields? Faced with this research question, the objective is to analyze external representations due to mental operations performed by students during the construction process of their proposed solutions to situations in the conceptual field of polyhedra: prisms and pyramids, which allow the identification and enunciation of operative invariants: concepts-in-action and theorems-in-action. The 12 (twelve) research participants are third-grade high school students at IFPA/Campus Santarém, and the data collection instruments adopted are questionnaires; interviews; notes; interventions based on situations from the conceptual field of polyhedrons (prisms and pyramids); videos, and audio produced during the execution of activities. The collected data were qualitatively analyzed in the light of the theories that constitute the theoretical framework of this research: Van Hiele's Model and the Theory of Conceptual Fields, through the identification, enunciation, and discussion of the operative invariants recorded by the students' actions on situations constructed for the van Hiele's first three levels (N0 - Visualization, N1 - Analysis and N2 - Informal Deduction). The analyses show that, initially, the participant’s level of understanding was visual and, despite the need for more situations that allow for discussion, expansion, deepening, and, consequently, understanding of the conceptual field under study, there was an advance in understanding up to N1. N2 was not fully achieved by any participant, confirming that the conceptualization process of geometric concepts does not happen in a brief period. It is noteworthy that the teaching strategy built based on the complementarity between the van Hiele Model and the TCC, in addition to indicating how geometric concepts were conceived over the time of school training, provided moments of reflection for the students, who became aware of the importance of their prior knowledge for the construction of new concepts, and of the teacher (researcher) who, based on the analyses, promoted (re)structuring of activities, aiming at greater interaction among students. This research proved the thesis: situations in the conceptual field of polyhedrons (prisms and pyramids), consistent with van Hiele's Levels of Development of Geometric Thinking, favor actions that lead to student records, anchored in operative invariants (concepts-in-action and theorems-in-action) and allow the teacher to identify, in the representations (conscious or unconscious) expressed by the students, these operational invariants that can contribute to a better evaluation of the conceptualization process of this conceptual field. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-14 2023-01-10 2024-09-04T15:27:30Z 2024-09-04T15:27:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SANTOS, Rudinei Alves dos. O modelo de Van Hiele e a teoria dos campos conceituais: complementaridade na conceitualização de prisma e pirâmide. 2023. 330 f. Tese (Doutorado em Educação em Ciências e Matemática) - Universidade Federal de Mato Grosso, Instituto de Ciências Exatas e da Terra, Cuiabá, 2023. http://ri.ufmt.br/handle/1/5875 |
identifier_str_mv |
SANTOS, Rudinei Alves dos. O modelo de Van Hiele e a teoria dos campos conceituais: complementaridade na conceitualização de prisma e pirâmide. 2023. 330 f. Tese (Doutorado em Educação em Ciências e Matemática) - Universidade Federal de Mato Grosso, Instituto de Ciências Exatas e da Terra, Cuiabá, 2023. |
url |
http://ri.ufmt.br/handle/1/5875 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Ciências Exatas e da Terra (ICET) UFMT CUC - Cuiabá Programa de Pós-Graduação em Educação em Ciências e Matemática - PPGECEM |
publisher.none.fl_str_mv |
Universidade Federal de Mato Grosso Brasil Instituto de Ciências Exatas e da Terra (ICET) UFMT CUC - Cuiabá Programa de Pós-Graduação em Educação em Ciências e Matemática - PPGECEM |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMT instname:Universidade Federal de Mato Grosso (UFMT) instacron:UFMT |
instname_str |
Universidade Federal de Mato Grosso (UFMT) |
instacron_str |
UFMT |
institution |
UFMT |
reponame_str |
Repositório Institucional da UFMT |
collection |
Repositório Institucional da UFMT |
repository.name.fl_str_mv |
Repositório Institucional da UFMT - Universidade Federal de Mato Grosso (UFMT) |
repository.mail.fl_str_mv |
jordanbiblio@gmail.com |
_version_ |
1813550374800326656 |