Trigonometric functions from the theory of meaningful learning

Detalhes bibliográficos
Autor(a) principal: Costa, Felipe de Almeida
Data de Publicação: 2019
Outros Autores: Allevato, Norma Suely Gomes
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revemop
Texto Completo: https://periodicos.ufop.br/revemop/article/view/1721
Resumo: The present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new.
id UFOP-3_a28af74ee0e23446a7e85727739ff22e
oai_identifier_str oai:pp.www.periodicos.ufop.br:article/1721
network_acronym_str UFOP-3
network_name_str Revemop
repository_id_str
spelling Trigonometric functions from the theory of meaningful learningEstudio de las funciones trigonométricas a partir de la Teoría del Aprendizaje SignificativoEstudo das funções trigonométricas a partir da Teoria da Aprendizagem SignificativaMathematics EducationTrigonometric FunctionsGeoGebraMeaningful LearningEducación MatemáticaFunciones TrigonométricasGeoGebraAprendizaje significativoEducação MatemáticaFunções TrigonométricasGeoGebraAprendizagem SignificativaThe present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new.Este artículo presenta un análisis de la producción de estudiantes en la resolución de una situación-problema involucrando funciones trigonométricas. La actividad fue extraída del Cuaderno del Alumno, material elaborado por la Secretaría de Estado de Educación de São Paulo. Participaron de la resolución estudiantes del 2º año de la secundaria de una escuela pública de São Paulo. El trabajo de los estudiantes se realizó en grupos. El desarrollo de la actividad involucra un organizador previo elaborado en GeoGebra y la consideración de los investigadores de que los conocimientos previos estaban disponibles en la adquisición del nuevo conocimiento implicado, subsidiados por la Teoría del Aprendizaje Significativo de David Ausubel. La situación involucró cuestiones relativas a las funciones y = Asen(Bx) + C e y = Acos(Bx) + C y tuvo por objetivo posibilitar la profundización de conocimientos sobre funciones trigonométricas, más específicamente la evaluación de los efectos de los parámetros A, B y C. Los análisis revelaron que, en el uso de un software de geometría dinámica, en la condición de organizador previo y con la existencia de conocimientos previos, las funciones y = sen (x) e y = cos (x) potencian el aprendizaje de los estudiantes acerca de los conocimientos nuevos de la situación-problema propuesta.Este artigo apresenta uma análise da produção de estudantes na resolução de uma situação-problema envolvendo funções trigonométricas. A atividade foi extraída do Caderno do Aluno, material elaborado pela Secretaria de Estado da Educação de São Paulo. Participaram da resolução estudantes do 2º ano do Ensino Médio de uma escola pública de São Paulo. O trabalho dos estudantes foi realizado em grupos.  O desenvolvimento da atividade envolvia um organizador prévio elaborado no GeoGebra e a consideração dos pesquisadores de que conhecimentos prévios estavam disponíveis na aquisição do conhecimento novo envolvido, subsidiados pela Teoria da Aprendizagem Significativa de David Ausubel. A situação envolveu questões relativas às funções y = Asen(Bx) + C e y = Acos(Bx) + C e teve por objetivo possibilitar o aprofundamento de conhecimentos sobre funções trigonométricas, mais especificamente a avaliação dos efeitos dos parâmetros A, B e C. As análises revelaram que, no uso de um software de geometria dinâmica, na condição de organizador prévio e com a existência de conhecimentos prévios, as funções y = sen(x) e y = cos(x) potencializam a aprendizagem dos estudantes acerca dos conhecimentos novos da situação-problema proposta.Editora da UFOP2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufop.br/revemop/article/view/172110.33532/revemop.v1n1a7Revemop; v. 1 n. 1: jan./abr. 2019; 126 - 1422596-0245reponame:Revemopinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPporhttps://periodicos.ufop.br/revemop/article/view/1721/1461https://periodicos.ufop.br/revemop/article/view/1721/4093https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRinfo:eu-repo/semantics/openAccessCosta, Felipe de AlmeidaAllevato, Norma Suely Gomes2022-05-30T17:06:00Zoai:pp.www.periodicos.ufop.br:article/1721Revistahttps://periodicos.ufop.br/revemop/indexPUBhttps://periodicos.ufop.br/revemop/oairevemop@ufop.edu.br||2596-02452596-0245opendoar:2022-05-30T17:06Revemop - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Trigonometric functions from the theory of meaningful learning
Estudio de las funciones trigonométricas a partir de la Teoría del Aprendizaje Significativo
Estudo das funções trigonométricas a partir da Teoria da Aprendizagem Significativa
title Trigonometric functions from the theory of meaningful learning
spellingShingle Trigonometric functions from the theory of meaningful learning
Costa, Felipe de Almeida
Mathematics Education
Trigonometric Functions
GeoGebra
Meaningful Learning
Educación Matemática
Funciones Trigonométricas
GeoGebra
Aprendizaje significativo
Educação Matemática
Funções Trigonométricas
GeoGebra
Aprendizagem Significativa
title_short Trigonometric functions from the theory of meaningful learning
title_full Trigonometric functions from the theory of meaningful learning
title_fullStr Trigonometric functions from the theory of meaningful learning
title_full_unstemmed Trigonometric functions from the theory of meaningful learning
title_sort Trigonometric functions from the theory of meaningful learning
author Costa, Felipe de Almeida
author_facet Costa, Felipe de Almeida
Allevato, Norma Suely Gomes
author_role author
author2 Allevato, Norma Suely Gomes
author2_role author
dc.contributor.author.fl_str_mv Costa, Felipe de Almeida
Allevato, Norma Suely Gomes
dc.subject.por.fl_str_mv Mathematics Education
Trigonometric Functions
GeoGebra
Meaningful Learning
Educación Matemática
Funciones Trigonométricas
GeoGebra
Aprendizaje significativo
Educação Matemática
Funções Trigonométricas
GeoGebra
Aprendizagem Significativa
topic Mathematics Education
Trigonometric Functions
GeoGebra
Meaningful Learning
Educación Matemática
Funciones Trigonométricas
GeoGebra
Aprendizaje significativo
Educação Matemática
Funções Trigonométricas
GeoGebra
Aprendizagem Significativa
description The present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufop.br/revemop/article/view/1721
10.33532/revemop.v1n1a7
url https://periodicos.ufop.br/revemop/article/view/1721
identifier_str_mv 10.33532/revemop.v1n1a7
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufop.br/revemop/article/view/1721/1461
https://periodicos.ufop.br/revemop/article/view/1721/4093
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora da UFOP
publisher.none.fl_str_mv Editora da UFOP
dc.source.none.fl_str_mv Revemop; v. 1 n. 1: jan./abr. 2019; 126 - 142
2596-0245
reponame:Revemop
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Revemop
collection Revemop
repository.name.fl_str_mv Revemop - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv revemop@ufop.edu.br||
_version_ 1797068970840293376