Trigonometric functions from the theory of meaningful learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revemop |
Texto Completo: | https://periodicos.ufop.br/revemop/article/view/1721 |
Resumo: | The present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new. |
id |
UFOP-3_a28af74ee0e23446a7e85727739ff22e |
---|---|
oai_identifier_str |
oai:pp.www.periodicos.ufop.br:article/1721 |
network_acronym_str |
UFOP-3 |
network_name_str |
Revemop |
repository_id_str |
|
spelling |
Trigonometric functions from the theory of meaningful learningEstudio de las funciones trigonométricas a partir de la Teoría del Aprendizaje SignificativoEstudo das funções trigonométricas a partir da Teoria da Aprendizagem SignificativaMathematics EducationTrigonometric FunctionsGeoGebraMeaningful LearningEducación MatemáticaFunciones TrigonométricasGeoGebraAprendizaje significativoEducação MatemáticaFunções TrigonométricasGeoGebraAprendizagem SignificativaThe present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new.Este artículo presenta un análisis de la producción de estudiantes en la resolución de una situación-problema involucrando funciones trigonométricas. La actividad fue extraída del Cuaderno del Alumno, material elaborado por la Secretaría de Estado de Educación de São Paulo. Participaron de la resolución estudiantes del 2º año de la secundaria de una escuela pública de São Paulo. El trabajo de los estudiantes se realizó en grupos. El desarrollo de la actividad involucra un organizador previo elaborado en GeoGebra y la consideración de los investigadores de que los conocimientos previos estaban disponibles en la adquisición del nuevo conocimiento implicado, subsidiados por la Teoría del Aprendizaje Significativo de David Ausubel. La situación involucró cuestiones relativas a las funciones y = Asen(Bx) + C e y = Acos(Bx) + C y tuvo por objetivo posibilitar la profundización de conocimientos sobre funciones trigonométricas, más específicamente la evaluación de los efectos de los parámetros A, B y C. Los análisis revelaron que, en el uso de un software de geometría dinámica, en la condición de organizador previo y con la existencia de conocimientos previos, las funciones y = sen (x) e y = cos (x) potencian el aprendizaje de los estudiantes acerca de los conocimientos nuevos de la situación-problema propuesta.Este artigo apresenta uma análise da produção de estudantes na resolução de uma situação-problema envolvendo funções trigonométricas. A atividade foi extraída do Caderno do Aluno, material elaborado pela Secretaria de Estado da Educação de São Paulo. Participaram da resolução estudantes do 2º ano do Ensino Médio de uma escola pública de São Paulo. O trabalho dos estudantes foi realizado em grupos. O desenvolvimento da atividade envolvia um organizador prévio elaborado no GeoGebra e a consideração dos pesquisadores de que conhecimentos prévios estavam disponíveis na aquisição do conhecimento novo envolvido, subsidiados pela Teoria da Aprendizagem Significativa de David Ausubel. A situação envolveu questões relativas às funções y = Asen(Bx) + C e y = Acos(Bx) + C e teve por objetivo possibilitar o aprofundamento de conhecimentos sobre funções trigonométricas, mais especificamente a avaliação dos efeitos dos parâmetros A, B e C. As análises revelaram que, no uso de um software de geometria dinâmica, na condição de organizador prévio e com a existência de conhecimentos prévios, as funções y = sen(x) e y = cos(x) potencializam a aprendizagem dos estudantes acerca dos conhecimentos novos da situação-problema proposta.Editora da UFOP2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufop.br/revemop/article/view/172110.33532/revemop.v1n1a7Revemop; v. 1 n. 1: jan./abr. 2019; 126 - 1422596-0245reponame:Revemopinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPporhttps://periodicos.ufop.br/revemop/article/view/1721/1461https://periodicos.ufop.br/revemop/article/view/1721/4093https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRinfo:eu-repo/semantics/openAccessCosta, Felipe de AlmeidaAllevato, Norma Suely Gomes2022-05-30T17:06:00Zoai:pp.www.periodicos.ufop.br:article/1721Revistahttps://periodicos.ufop.br/revemop/indexPUBhttps://periodicos.ufop.br/revemop/oairevemop@ufop.edu.br||2596-02452596-0245opendoar:2022-05-30T17:06Revemop - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Trigonometric functions from the theory of meaningful learning Estudio de las funciones trigonométricas a partir de la Teoría del Aprendizaje Significativo Estudo das funções trigonométricas a partir da Teoria da Aprendizagem Significativa |
title |
Trigonometric functions from the theory of meaningful learning |
spellingShingle |
Trigonometric functions from the theory of meaningful learning Costa, Felipe de Almeida Mathematics Education Trigonometric Functions GeoGebra Meaningful Learning Educación Matemática Funciones Trigonométricas GeoGebra Aprendizaje significativo Educação Matemática Funções Trigonométricas GeoGebra Aprendizagem Significativa |
title_short |
Trigonometric functions from the theory of meaningful learning |
title_full |
Trigonometric functions from the theory of meaningful learning |
title_fullStr |
Trigonometric functions from the theory of meaningful learning |
title_full_unstemmed |
Trigonometric functions from the theory of meaningful learning |
title_sort |
Trigonometric functions from the theory of meaningful learning |
author |
Costa, Felipe de Almeida |
author_facet |
Costa, Felipe de Almeida Allevato, Norma Suely Gomes |
author_role |
author |
author2 |
Allevato, Norma Suely Gomes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Felipe de Almeida Allevato, Norma Suely Gomes |
dc.subject.por.fl_str_mv |
Mathematics Education Trigonometric Functions GeoGebra Meaningful Learning Educación Matemática Funciones Trigonométricas GeoGebra Aprendizaje significativo Educação Matemática Funções Trigonométricas GeoGebra Aprendizagem Significativa |
topic |
Mathematics Education Trigonometric Functions GeoGebra Meaningful Learning Educación Matemática Funciones Trigonométricas GeoGebra Aprendizaje significativo Educação Matemática Funções Trigonométricas GeoGebra Aprendizagem Significativa |
description |
The present article presents an analysis of student output in solving a problem situation involving parametric trigonometric functions. The situation used was extracted from the Student Notebook, material prepared by the Education Department of the State of São Paulo. 40 students from a high school class from a public school in São Paulo participated in the resolution, one of the authors of this article being a teacher and responsible for the application of the activity. The work of the students was carried out in groups of 5. The development of the activity involved a previous organizer elaborated in GeoGebra, and the consideration of the researchers of what previous knowledge was available in the acquisition of the new knowledge involved in the situation, in accordance with the Theory of Learning Significant of Ausubel. The problem situation involved questions related to the functions y = Asin(Bx) + C and y = Acos(Bx) + C, and aimed to allow a deeper understanding of trigonometric functions, but specifically to evaluate the effects of parameters A, B and C. The analyzes revealed that the use of dynamic geometry software as a prior organizer and the existence of previous knowledge, the functions y = sin(x) and y = cos(x) enhance students' learning about new. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufop.br/revemop/article/view/1721 10.33532/revemop.v1n1a7 |
url |
https://periodicos.ufop.br/revemop/article/view/1721 |
identifier_str_mv |
10.33532/revemop.v1n1a7 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufop.br/revemop/article/view/1721/1461 https://periodicos.ufop.br/revemop/article/view/1721/4093 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora da UFOP |
publisher.none.fl_str_mv |
Editora da UFOP |
dc.source.none.fl_str_mv |
Revemop; v. 1 n. 1: jan./abr. 2019; 126 - 142 2596-0245 reponame:Revemop instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Revemop |
collection |
Revemop |
repository.name.fl_str_mv |
Revemop - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
revemop@ufop.edu.br|| |
_version_ |
1797068970840293376 |