A hierarchical hybrid neural model in short-termload forecasting.

Detalhes bibliográficos
Autor(a) principal: Carpinteiro, Otávio Augusto Salgado
Data de Publicação: 2004
Outros Autores: Reis, Agnaldo José da Rocha, Quintanilha Filho, Paulo Sergio
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/1189
Resumo: This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up o f two self-organizing map nets one on top of the other |,and a single-layer perceptron. It has application into domains in which the context information given by former events plays aprimary role. The model was trained and assessed onload data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next six hours. The paper presents the results, and evaluates them.
id UFOP_0fb61b93b87fceb124a5eb539c465e81
oai_identifier_str oai:repositorio.ufop.br:123456789/1189
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling A hierarchical hybrid neural model in short-termload forecasting.This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up o f two self-organizing map nets one on top of the other |,and a single-layer perceptron. It has application into domains in which the context information given by former events plays aprimary role. The model was trained and assessed onload data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next six hours. The paper presents the results, and evaluates them.2012-07-24T14:34:13Z2012-07-24T14:34:13Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCARPINTEIRO, O. A. S.; REIS, A. J. da R.; QUINTANILHA FILHO, P. S. A hierarchical hybrid neural model in short-termload forecasting. In: Simpósio Brasileiro de Redes Neurais, 2004. Natal. Anais... Natal: SBRN, 2004. p.1-6. Disponível em: <http://www.gpesc.unifei.edu.br/tmp/sbrn2004-3669.pdf>. Acesso em: 23 jul. 2012.http://www.repositorio.ufop.br/handle/123456789/1189O Periódico Applied Soft Computing concede permissão para depósito do artigo no Repositório Institucional da UFOP. Número da licença: 3291280500461.info:eu-repo/semantics/openAccessCarpinteiro, Otávio Augusto SalgadoReis, Agnaldo José da RochaQuintanilha Filho, Paulo Sergioengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2016-10-27T13:50:36Zoai:repositorio.ufop.br:123456789/1189Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332016-10-27T13:50:36Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv A hierarchical hybrid neural model in short-termload forecasting.
title A hierarchical hybrid neural model in short-termload forecasting.
spellingShingle A hierarchical hybrid neural model in short-termload forecasting.
Carpinteiro, Otávio Augusto Salgado
title_short A hierarchical hybrid neural model in short-termload forecasting.
title_full A hierarchical hybrid neural model in short-termload forecasting.
title_fullStr A hierarchical hybrid neural model in short-termload forecasting.
title_full_unstemmed A hierarchical hybrid neural model in short-termload forecasting.
title_sort A hierarchical hybrid neural model in short-termload forecasting.
author Carpinteiro, Otávio Augusto Salgado
author_facet Carpinteiro, Otávio Augusto Salgado
Reis, Agnaldo José da Rocha
Quintanilha Filho, Paulo Sergio
author_role author
author2 Reis, Agnaldo José da Rocha
Quintanilha Filho, Paulo Sergio
author2_role author
author
dc.contributor.author.fl_str_mv Carpinteiro, Otávio Augusto Salgado
Reis, Agnaldo José da Rocha
Quintanilha Filho, Paulo Sergio
description This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up o f two self-organizing map nets one on top of the other |,and a single-layer perceptron. It has application into domains in which the context information given by former events plays aprimary role. The model was trained and assessed onload data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next six hours. The paper presents the results, and evaluates them.
publishDate 2004
dc.date.none.fl_str_mv 2004
2012-07-24T14:34:13Z
2012-07-24T14:34:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARPINTEIRO, O. A. S.; REIS, A. J. da R.; QUINTANILHA FILHO, P. S. A hierarchical hybrid neural model in short-termload forecasting. In: Simpósio Brasileiro de Redes Neurais, 2004. Natal. Anais... Natal: SBRN, 2004. p.1-6. Disponível em: <http://www.gpesc.unifei.edu.br/tmp/sbrn2004-3669.pdf>. Acesso em: 23 jul. 2012.
http://www.repositorio.ufop.br/handle/123456789/1189
identifier_str_mv CARPINTEIRO, O. A. S.; REIS, A. J. da R.; QUINTANILHA FILHO, P. S. A hierarchical hybrid neural model in short-termload forecasting. In: Simpósio Brasileiro de Redes Neurais, 2004. Natal. Anais... Natal: SBRN, 2004. p.1-6. Disponível em: <http://www.gpesc.unifei.edu.br/tmp/sbrn2004-3669.pdf>. Acesso em: 23 jul. 2012.
url http://www.repositorio.ufop.br/handle/123456789/1189
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002803439730688