A hierarchical self-organizing map model in short-termload forecasting.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
dARK ID: | ark:/61566/001300000fvnm |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/1190 |
Resumo: | This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up of two self-organizing map nets|one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained and assessed on load data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next 24 hours. The paper presents the results, and evaluates them |
id |
UFOP_500af78d4b2a012039313c1ab2c927d7 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/1190 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
A hierarchical self-organizing map model in short-termload forecasting.Short-term load forecastingSelf-organizing mapNeural networkThis paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up of two self-organizing map nets|one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained and assessed on load data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next 24 hours. The paper presents the results, and evaluates them2012-07-24T14:53:14Z2012-07-24T14:53:14Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCARPINTEIRO, O. A. S.; REIS, A. J. da R. A hierarchical self-organizing map model in short-termload forecasting. In: Congresso Brasileiro de Automática, 15., 2004. Gramado. Anais... XV Congresso Brasileiro de Automática, 2004. p.1-6. Disponível em: <http://www.lti.pcs.usp.br/robotics/grva/publicacoes/outras/cba2004-cd-rom/cba2004/pdf/548.pdf>. Acesso em: 23 jul. 2012.http://www.repositorio.ufop.br/handle/123456789/1190ark:/61566/001300000fvnmCarpinteiro, Otávio Augusto SalgadoReis, Agnaldo José da Rochaengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOPinfo:eu-repo/semantics/openAccess2024-11-11T03:37:57Zoai:repositorio.ufop.br:123456789/1190Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-11T03:37:57Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
A hierarchical self-organizing map model in short-termload forecasting. |
title |
A hierarchical self-organizing map model in short-termload forecasting. |
spellingShingle |
A hierarchical self-organizing map model in short-termload forecasting. Carpinteiro, Otávio Augusto Salgado Short-term load forecasting Self-organizing map Neural network |
title_short |
A hierarchical self-organizing map model in short-termload forecasting. |
title_full |
A hierarchical self-organizing map model in short-termload forecasting. |
title_fullStr |
A hierarchical self-organizing map model in short-termload forecasting. |
title_full_unstemmed |
A hierarchical self-organizing map model in short-termload forecasting. |
title_sort |
A hierarchical self-organizing map model in short-termload forecasting. |
author |
Carpinteiro, Otávio Augusto Salgado |
author_facet |
Carpinteiro, Otávio Augusto Salgado Reis, Agnaldo José da Rocha |
author_role |
author |
author2 |
Reis, Agnaldo José da Rocha |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Carpinteiro, Otávio Augusto Salgado Reis, Agnaldo José da Rocha |
dc.subject.por.fl_str_mv |
Short-term load forecasting Self-organizing map Neural network |
topic |
Short-term load forecasting Self-organizing map Neural network |
description |
This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up of two self-organizing map nets|one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained and assessed on load data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next 24 hours. The paper presents the results, and evaluates them |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 2012-07-24T14:53:14Z 2012-07-24T14:53:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CARPINTEIRO, O. A. S.; REIS, A. J. da R. A hierarchical self-organizing map model in short-termload forecasting. In: Congresso Brasileiro de Automática, 15., 2004. Gramado. Anais... XV Congresso Brasileiro de Automática, 2004. p.1-6. Disponível em: <http://www.lti.pcs.usp.br/robotics/grva/publicacoes/outras/cba2004-cd-rom/cba2004/pdf/548.pdf>. Acesso em: 23 jul. 2012. http://www.repositorio.ufop.br/handle/123456789/1190 |
dc.identifier.dark.fl_str_mv |
ark:/61566/001300000fvnm |
identifier_str_mv |
CARPINTEIRO, O. A. S.; REIS, A. J. da R. A hierarchical self-organizing map model in short-termload forecasting. In: Congresso Brasileiro de Automática, 15., 2004. Gramado. Anais... XV Congresso Brasileiro de Automática, 2004. p.1-6. Disponível em: <http://www.lti.pcs.usp.br/robotics/grva/publicacoes/outras/cba2004-cd-rom/cba2004/pdf/548.pdf>. Acesso em: 23 jul. 2012. ark:/61566/001300000fvnm |
url |
http://www.repositorio.ufop.br/handle/123456789/1190 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1817705800613756928 |