Object-based image retrieval using local feature extraction and relevance feedback.

Detalhes bibliográficos
Autor(a) principal: Freitas, Mário H. G.
Data de Publicação: 2013
Outros Autores: Pádua, Flávio Luis Cardeal, Assis, Guilherme Tavares de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/4360
https://doi.org/10.5120/13499-1239
Resumo: This paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query.
id UFOP_1a7e4215b00713e561f7232295e3d105
oai_identifier_str oai:repositorio.ufop.br:123456789/4360
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Object-based image retrieval using local feature extraction and relevance feedback.Retrieval imageRelevance feedbackFeature extractionThis paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query.2015-01-26T11:12:55Z2015-01-26T11:12:55Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015.0975-8887http://www.repositorio.ufop.br/handle/123456789/4360https://doi.org/10.5120/13499-1239O periódico International Journal of Computer Applications permite o arquivamento da versão PDF do editor. Fonte: Sherpa/Romeo <http://www.sherpa.ac.uk/romeo/search.php?issn=0975-8887>. Acesso em: 02 jan. 2017.info:eu-repo/semantics/openAccessFreitas, Mário H. G.Pádua, Flávio Luis CardealAssis, Guilherme Tavares deengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-06-12T15:51:04Zoai:repositorio.ufop.br:123456789/4360Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-06-12T15:51:04Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Object-based image retrieval using local feature extraction and relevance feedback.
title Object-based image retrieval using local feature extraction and relevance feedback.
spellingShingle Object-based image retrieval using local feature extraction and relevance feedback.
Freitas, Mário H. G.
Retrieval image
Relevance feedback
Feature extraction
title_short Object-based image retrieval using local feature extraction and relevance feedback.
title_full Object-based image retrieval using local feature extraction and relevance feedback.
title_fullStr Object-based image retrieval using local feature extraction and relevance feedback.
title_full_unstemmed Object-based image retrieval using local feature extraction and relevance feedback.
title_sort Object-based image retrieval using local feature extraction and relevance feedback.
author Freitas, Mário H. G.
author_facet Freitas, Mário H. G.
Pádua, Flávio Luis Cardeal
Assis, Guilherme Tavares de
author_role author
author2 Pádua, Flávio Luis Cardeal
Assis, Guilherme Tavares de
author2_role author
author
dc.contributor.author.fl_str_mv Freitas, Mário H. G.
Pádua, Flávio Luis Cardeal
Assis, Guilherme Tavares de
dc.subject.por.fl_str_mv Retrieval image
Relevance feedback
Feature extraction
topic Retrieval image
Relevance feedback
Feature extraction
description This paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query.
publishDate 2013
dc.date.none.fl_str_mv 2013
2015-01-26T11:12:55Z
2015-01-26T11:12:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015.
0975-8887
http://www.repositorio.ufop.br/handle/123456789/4360
https://doi.org/10.5120/13499-1239
identifier_str_mv FREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015.
0975-8887
url http://www.repositorio.ufop.br/handle/123456789/4360
https://doi.org/10.5120/13499-1239
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002826846044160