Object-based image retrieval using local feature extraction and relevance feedback.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/4360 https://doi.org/10.5120/13499-1239 |
Resumo: | This paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query. |
id |
UFOP_1a7e4215b00713e561f7232295e3d105 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/4360 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Object-based image retrieval using local feature extraction and relevance feedback.Retrieval imageRelevance feedbackFeature extractionThis paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query.2015-01-26T11:12:55Z2015-01-26T11:12:55Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015.0975-8887http://www.repositorio.ufop.br/handle/123456789/4360https://doi.org/10.5120/13499-1239O periódico International Journal of Computer Applications permite o arquivamento da versão PDF do editor. Fonte: Sherpa/Romeo <http://www.sherpa.ac.uk/romeo/search.php?issn=0975-8887>. Acesso em: 02 jan. 2017.info:eu-repo/semantics/openAccessFreitas, Mário H. G.Pádua, Flávio Luis CardealAssis, Guilherme Tavares deengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-06-12T15:51:04Zoai:repositorio.ufop.br:123456789/4360Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-06-12T15:51:04Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Object-based image retrieval using local feature extraction and relevance feedback. |
title |
Object-based image retrieval using local feature extraction and relevance feedback. |
spellingShingle |
Object-based image retrieval using local feature extraction and relevance feedback. Freitas, Mário H. G. Retrieval image Relevance feedback Feature extraction |
title_short |
Object-based image retrieval using local feature extraction and relevance feedback. |
title_full |
Object-based image retrieval using local feature extraction and relevance feedback. |
title_fullStr |
Object-based image retrieval using local feature extraction and relevance feedback. |
title_full_unstemmed |
Object-based image retrieval using local feature extraction and relevance feedback. |
title_sort |
Object-based image retrieval using local feature extraction and relevance feedback. |
author |
Freitas, Mário H. G. |
author_facet |
Freitas, Mário H. G. Pádua, Flávio Luis Cardeal Assis, Guilherme Tavares de |
author_role |
author |
author2 |
Pádua, Flávio Luis Cardeal Assis, Guilherme Tavares de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Freitas, Mário H. G. Pádua, Flávio Luis Cardeal Assis, Guilherme Tavares de |
dc.subject.por.fl_str_mv |
Retrieval image Relevance feedback Feature extraction |
topic |
Retrieval image Relevance feedback Feature extraction |
description |
This paper addresses the problem of object-based image retrieval, by using local feature extraction and a relevance feedback mechanism for quickly narrowing down the image search process to the user needs. This approach relies on the hypothesis that semantically similar images are clustered in some feature space and, in this scenario: (i) computes image signatures that are invariant to scale and rotation using SIFT, (ii) calculates the vector of locally aggregated descriptors (VLAD) to make a fixed length descriptor for the images, (iii) reduce the VLAD descriptor dimensionality with Principal Component Analysis (PCA) and (iv) uses the k-Means algorithm for grouping images that are semantically similar. The proposed approach has been successfully validated using 33,192 images from the ALOI database, obtaining a mean recall value of 47.4% for searches of images containing objects that are identical to the object query and 20.7% for searches of images containing different objects (albeit visually similar) to the object query. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2015-01-26T11:12:55Z 2015-01-26T11:12:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015. 0975-8887 http://www.repositorio.ufop.br/handle/123456789/4360 https://doi.org/10.5120/13499-1239 |
identifier_str_mv |
FREITAS, M. H. G.; PÁDUA, F. L.C.; ASSIS, G. T. de. Object-based image retrieval using local feature extraction and relevance feedback. International Journal of Computer Applications, v. 78, p. 8-14, 2013. Disponível em: <http://research.ijcaonline.org/volume78/number7/pxc3891239.pdf>. Acesso em: 22 jan. 2015. 0975-8887 |
url |
http://www.repositorio.ufop.br/handle/123456789/4360 https://doi.org/10.5120/13499-1239 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002826846044160 |