Efficiency parameters estimation in gemstones cut design using artificial neural networks.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/5539 https://doi.org/10.1016/j.commatsci.2006.05.012 |
Resumo: | This paper deals with the problem of estimating cut results for faceted gemstones. The proposed approach applies artificial neural networks for a faceted gemstones analysis tool that could be further developed for incorporation in a computer-aided-design (CAD) context. Basic concepts concerning gemstone processing are introduced and the design of computational tools using neural networks is discussed. The model presented proposes two criteria to assess the efficiency of lapidary designs for rock crystal quartz: brilliance and yield. Closing the article, 62 different lapidary models were used to train and test the neural network tool. |
id |
UFOP_8eeca712cb308be26b7cc065534f2e19 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/5539 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Efficiency parameters estimation in gemstones cut design using artificial neural networks.Faceted gemstonesLapidary designDesign efficiencyArtificial neural networksThis paper deals with the problem of estimating cut results for faceted gemstones. The proposed approach applies artificial neural networks for a faceted gemstones analysis tool that could be further developed for incorporation in a computer-aided-design (CAD) context. Basic concepts concerning gemstone processing are introduced and the design of computational tools using neural networks is discussed. The model presented proposes two criteria to assess the efficiency of lapidary designs for rock crystal quartz: brilliance and yield. Closing the article, 62 different lapidary models were used to train and test the neural network tool.2015-05-26T18:35:28Z2015-05-26T18:35:28Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMOL, A. A. et al. Efficiency parameters estimation in gemstones cut design using artificial neural networks. Computational Materials Science, v. 38, p. 727-736, 2007. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927025606001625>. Acesso em: 09 abr. 2015.0927-0256http://www.repositorio.ufop.br/handle/123456789/5539https://doi.org/10.1016/j.commatsci.2006.05.012O periódico Computational Materials Science concede permissão para depósito deste artigo no Repositório Institucional da UFOP. Número da licença: 3621890506404.info:eu-repo/semantics/openAccessMol, Adriano AguiarMartins Filho, Luiz de SiqueiraSilva, José Demisio Simões daRocha, Ronilsonengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-07-26T17:47:02Zoai:repositorio.ufop.br:123456789/5539Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-07-26T17:47:02Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
title |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
spellingShingle |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. Mol, Adriano Aguiar Faceted gemstones Lapidary design Design efficiency Artificial neural networks |
title_short |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
title_full |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
title_fullStr |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
title_full_unstemmed |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
title_sort |
Efficiency parameters estimation in gemstones cut design using artificial neural networks. |
author |
Mol, Adriano Aguiar |
author_facet |
Mol, Adriano Aguiar Martins Filho, Luiz de Siqueira Silva, José Demisio Simões da Rocha, Ronilson |
author_role |
author |
author2 |
Martins Filho, Luiz de Siqueira Silva, José Demisio Simões da Rocha, Ronilson |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Mol, Adriano Aguiar Martins Filho, Luiz de Siqueira Silva, José Demisio Simões da Rocha, Ronilson |
dc.subject.por.fl_str_mv |
Faceted gemstones Lapidary design Design efficiency Artificial neural networks |
topic |
Faceted gemstones Lapidary design Design efficiency Artificial neural networks |
description |
This paper deals with the problem of estimating cut results for faceted gemstones. The proposed approach applies artificial neural networks for a faceted gemstones analysis tool that could be further developed for incorporation in a computer-aided-design (CAD) context. Basic concepts concerning gemstone processing are introduced and the design of computational tools using neural networks is discussed. The model presented proposes two criteria to assess the efficiency of lapidary designs for rock crystal quartz: brilliance and yield. Closing the article, 62 different lapidary models were used to train and test the neural network tool. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2015-05-26T18:35:28Z 2015-05-26T18:35:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MOL, A. A. et al. Efficiency parameters estimation in gemstones cut design using artificial neural networks. Computational Materials Science, v. 38, p. 727-736, 2007. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927025606001625>. Acesso em: 09 abr. 2015. 0927-0256 http://www.repositorio.ufop.br/handle/123456789/5539 https://doi.org/10.1016/j.commatsci.2006.05.012 |
identifier_str_mv |
MOL, A. A. et al. Efficiency parameters estimation in gemstones cut design using artificial neural networks. Computational Materials Science, v. 38, p. 727-736, 2007. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927025606001625>. Acesso em: 09 abr. 2015. 0927-0256 |
url |
http://www.repositorio.ufop.br/handle/123456789/5539 https://doi.org/10.1016/j.commatsci.2006.05.012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002836101824512 |