Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/6632 https://doi.org/10.1186/s13071-016-1369-9 |
Resumo: | The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested. |
id |
UFOP_9d6c45c9e363266215a9b424b363ca12 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/6632 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?Schistosoma mansoniSchistosoma japonicumRadiation attenuated vaccineAntigen vaccineIntravascular migrationThe laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested.2016-07-25T16:22:04Z2016-07-25T16:22:04Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfWILSON, R. A.; LI, X. H.; BORGES, W. de C. Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?. Parasites & Vectors, v. 9, p. 89, 2016. Disponível em: <http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1369-9>. Acesso em: 16 jun. 2016.1756-3305http://www.repositorio.ufop.br/handle/123456789/6632https://doi.org/10.1186/s13071-016-1369-9This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Fonte: o próprio artigo.info:eu-repo/semantics/openAccessWilson, R. AlanLi, Xiao HongBorges, William de Castroengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-09-20T15:10:25Zoai:repositorio.ufop.br:123456789/6632Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-09-20T15:10:25Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
title |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
spellingShingle |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? Wilson, R. Alan Schistosoma mansoni Schistosoma japonicum Radiation attenuated vaccine Antigen vaccine Intravascular migration |
title_short |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
title_full |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
title_fullStr |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
title_full_unstemmed |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
title_sort |
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? |
author |
Wilson, R. Alan |
author_facet |
Wilson, R. Alan Li, Xiao Hong Borges, William de Castro |
author_role |
author |
author2 |
Li, Xiao Hong Borges, William de Castro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Wilson, R. Alan Li, Xiao Hong Borges, William de Castro |
dc.subject.por.fl_str_mv |
Schistosoma mansoni Schistosoma japonicum Radiation attenuated vaccine Antigen vaccine Intravascular migration |
topic |
Schistosoma mansoni Schistosoma japonicum Radiation attenuated vaccine Antigen vaccine Intravascular migration |
description |
The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-25T16:22:04Z 2016-07-25T16:22:04Z 2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
WILSON, R. A.; LI, X. H.; BORGES, W. de C. Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?. Parasites & Vectors, v. 9, p. 89, 2016. Disponível em: <http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1369-9>. Acesso em: 16 jun. 2016. 1756-3305 http://www.repositorio.ufop.br/handle/123456789/6632 https://doi.org/10.1186/s13071-016-1369-9 |
identifier_str_mv |
WILSON, R. A.; LI, X. H.; BORGES, W. de C. Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?. Parasites & Vectors, v. 9, p. 89, 2016. Disponível em: <http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1369-9>. Acesso em: 16 jun. 2016. 1756-3305 |
url |
http://www.repositorio.ufop.br/handle/123456789/6632 https://doi.org/10.1186/s13071-016-1369-9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002829582827520 |