A convergence indicator for multi-objective optimisation algorithms.

Detalhes bibliográficos
Autor(a) principal: Santos, Thiago Fontes
Data de Publicação: 2018
Outros Autores: Xavier, Sebastião Martins
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/11525
http://dx.doi.org/10.5540/tema.2018.019.03.0437
Resumo: The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.
id UFOP_f0a2d544be27f8e4794af187ea165744
oai_identifier_str oai:repositorio.ufop.br:123456789/11525
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling A convergence indicator for multi-objective optimisation algorithms.Shannon entropyPerformance measureThe algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.2019-06-11T14:07:55Z2019-06-11T14:07:55Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019.2179-8451http://www.repositorio.ufop.br/handle/123456789/11525http://dx.doi.org/10.5540/tema.2018.019.03.0437Todo o conteúdo do periódico Tema, exceto onde identificado, está licenciado sob uma licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho em qualquer suporte ou formato desde que sejam citados o autor e o licenciante. Fonte: Tema <http://www.scielo.br/scielo.php?script=sci_serial&pid=2179-8451&lng=en&nrm=iso>. Acesso em: 13 abr. 2019.info:eu-repo/semantics/openAccessSantos, Thiago FontesXavier, Sebastião Martinsengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-06-11T14:07:55Zoai:repositorio.ufop.br:123456789/11525Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-06-11T14:07:55Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv A convergence indicator for multi-objective optimisation algorithms.
title A convergence indicator for multi-objective optimisation algorithms.
spellingShingle A convergence indicator for multi-objective optimisation algorithms.
Santos, Thiago Fontes
Shannon entropy
Performance measure
title_short A convergence indicator for multi-objective optimisation algorithms.
title_full A convergence indicator for multi-objective optimisation algorithms.
title_fullStr A convergence indicator for multi-objective optimisation algorithms.
title_full_unstemmed A convergence indicator for multi-objective optimisation algorithms.
title_sort A convergence indicator for multi-objective optimisation algorithms.
author Santos, Thiago Fontes
author_facet Santos, Thiago Fontes
Xavier, Sebastião Martins
author_role author
author2 Xavier, Sebastião Martins
author2_role author
dc.contributor.author.fl_str_mv Santos, Thiago Fontes
Xavier, Sebastião Martins
dc.subject.por.fl_str_mv Shannon entropy
Performance measure
topic Shannon entropy
Performance measure
description The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-06-11T14:07:55Z
2019-06-11T14:07:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019.
2179-8451
http://www.repositorio.ufop.br/handle/123456789/11525
http://dx.doi.org/10.5540/tema.2018.019.03.0437
identifier_str_mv SANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019.
2179-8451
url http://www.repositorio.ufop.br/handle/123456789/11525
http://dx.doi.org/10.5540/tema.2018.019.03.0437
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1813002821316902912