A convergence indicator for multi-objective optimisation algorithms.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/11525 http://dx.doi.org/10.5540/tema.2018.019.03.0437 |
Resumo: | The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume. |
id |
UFOP_f0a2d544be27f8e4794af187ea165744 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/11525 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
A convergence indicator for multi-objective optimisation algorithms.Shannon entropyPerformance measureThe algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.2019-06-11T14:07:55Z2019-06-11T14:07:55Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019.2179-8451http://www.repositorio.ufop.br/handle/123456789/11525http://dx.doi.org/10.5540/tema.2018.019.03.0437Todo o conteúdo do periódico Tema, exceto onde identificado, está licenciado sob uma licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho em qualquer suporte ou formato desde que sejam citados o autor e o licenciante. Fonte: Tema <http://www.scielo.br/scielo.php?script=sci_serial&pid=2179-8451&lng=en&nrm=iso>. Acesso em: 13 abr. 2019.info:eu-repo/semantics/openAccessSantos, Thiago FontesXavier, Sebastião Martinsengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2019-06-11T14:07:55Zoai:repositorio.ufop.br:123456789/11525Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332019-06-11T14:07:55Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
A convergence indicator for multi-objective optimisation algorithms. |
title |
A convergence indicator for multi-objective optimisation algorithms. |
spellingShingle |
A convergence indicator for multi-objective optimisation algorithms. Santos, Thiago Fontes Shannon entropy Performance measure |
title_short |
A convergence indicator for multi-objective optimisation algorithms. |
title_full |
A convergence indicator for multi-objective optimisation algorithms. |
title_fullStr |
A convergence indicator for multi-objective optimisation algorithms. |
title_full_unstemmed |
A convergence indicator for multi-objective optimisation algorithms. |
title_sort |
A convergence indicator for multi-objective optimisation algorithms. |
author |
Santos, Thiago Fontes |
author_facet |
Santos, Thiago Fontes Xavier, Sebastião Martins |
author_role |
author |
author2 |
Xavier, Sebastião Martins |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Thiago Fontes Xavier, Sebastião Martins |
dc.subject.por.fl_str_mv |
Shannon entropy Performance measure |
topic |
Shannon entropy Performance measure |
description |
The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it’s considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(∆), Averaged Hausdorff distance (∆p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require to know the true Pareto set and 2) Medium computational cost when compared with Hypervolume. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-06-11T14:07:55Z 2019-06-11T14:07:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019. 2179-8451 http://www.repositorio.ufop.br/handle/123456789/11525 http://dx.doi.org/10.5540/tema.2018.019.03.0437 |
identifier_str_mv |
SANTOS, T. F.; XAVIER, S. M. A convergence indicator for multi-objective optimisation algorithms. TEMA. Tendências em Matemática Aplicada e Computacional, v. 19, n. 3, p. 437-448, 2018. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512018000300437>. Acesso em: 19 mar. 2019. 2179-8451 |
url |
http://www.repositorio.ufop.br/handle/123456789/11525 http://dx.doi.org/10.5540/tema.2018.019.03.0437 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1813002821316902912 |