Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre

Detalhes bibliográficos
Autor(a) principal: COSTA, Clauber Henrique Souza da
Data de Publicação: 2017
Outros Autores: https://orcid.org/0000-0002-6915-1056
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPA
Texto Completo: http://repositorio.ufpa.br:8080/jspui/handle/2011/14462
Resumo: O colesterol é uma substância de extrema importância para todos os animais. Entretanto, seu alto nível no corpo humano está ligado às duas principais doenças que mais matam no mundo: cardiopatia isquêmica e AVC. Um dos medicamentos sintéticos já utilizados no tratamento da hipercolesterolemia são as estatinas, inibidoras da 3-hidroxi-3-metilglutaril Coezima A redutase (HMGR), que agem principalmente no fígado inibindo a conversão do substrato HMG-CoA em ácido mevalônico, que é o metabólito precursor do colesterol. Realizou-se estudos de Dinâmica Molecular (DM) combinados com Análise de Componentes Principais (PCA) para verificar o mecanismo das mudanças conformacionais do domínio Flap no Cterminal (resíduos His861, Leu862, Val863, Lys864, Ser865 e His866) após a ligação do substrato e de estatinas eficientes na inibição da enzima HMGR. Um total de 500 ns de Tempo de simulação de DM foram realizados neste estudo. Empregou-se cálculos de Energias Livres de Ligação, que indicaram que o mecanismo estrutural do Flap está relacionado diretamente com a ação da proteína HMGR, uma vez que esse domínio controla o acesso ao sítio ativo da enzima. Os resultados mostram também que a modificação estrutural do Flap aumenta a contribuição energética do sistema ao permitir maiores interações com os resíduos catalíticos e, consequentemente, a capacidade de inibir a produção do colesterol, como foi observado para a His866 catalítica, que tem contribuição bastante favorável quando o Flap está no estado fechado, com energia de -14,802 Kcal/mol, e quando o Flap passa para o estado aberto a contribuição é menos favorável, com -1,022 Kcal/mol, para o inibidor 1, mostrando que no estado fechado o resíduo catalítico está envolvido diretamente e contribui de modo favorável para o sistema, nos levando a uma melhor compreensão das mudanças conformacionais de HMGR após a ligação dos ligantes estatínicos e substrato HMG-CoA.
id UFPA_35b77e501f20424210915caf3c888181
oai_identifier_str oai:repositorio.ufpa.br:2011/14462
network_acronym_str UFPA
network_name_str Repositório Institucional da UFPA
repository_id_str 2123
spelling 2022-06-10T17:05:12Z2022-06-10T17:05:12Z2017-08-03COSTA, Clauber Henrique Souza da. Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre. Orientador: Jerônimo Lameira Silva. 2017. 96 f. Dissertação (Mestrado em Química Medicinal e Modelagem Molecular) – Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, 2017. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14462. Acesso em:.http://repositorio.ufpa.br:8080/jspui/handle/2011/14462O colesterol é uma substância de extrema importância para todos os animais. Entretanto, seu alto nível no corpo humano está ligado às duas principais doenças que mais matam no mundo: cardiopatia isquêmica e AVC. Um dos medicamentos sintéticos já utilizados no tratamento da hipercolesterolemia são as estatinas, inibidoras da 3-hidroxi-3-metilglutaril Coezima A redutase (HMGR), que agem principalmente no fígado inibindo a conversão do substrato HMG-CoA em ácido mevalônico, que é o metabólito precursor do colesterol. Realizou-se estudos de Dinâmica Molecular (DM) combinados com Análise de Componentes Principais (PCA) para verificar o mecanismo das mudanças conformacionais do domínio Flap no Cterminal (resíduos His861, Leu862, Val863, Lys864, Ser865 e His866) após a ligação do substrato e de estatinas eficientes na inibição da enzima HMGR. Um total de 500 ns de Tempo de simulação de DM foram realizados neste estudo. Empregou-se cálculos de Energias Livres de Ligação, que indicaram que o mecanismo estrutural do Flap está relacionado diretamente com a ação da proteína HMGR, uma vez que esse domínio controla o acesso ao sítio ativo da enzima. Os resultados mostram também que a modificação estrutural do Flap aumenta a contribuição energética do sistema ao permitir maiores interações com os resíduos catalíticos e, consequentemente, a capacidade de inibir a produção do colesterol, como foi observado para a His866 catalítica, que tem contribuição bastante favorável quando o Flap está no estado fechado, com energia de -14,802 Kcal/mol, e quando o Flap passa para o estado aberto a contribuição é menos favorável, com -1,022 Kcal/mol, para o inibidor 1, mostrando que no estado fechado o resíduo catalítico está envolvido diretamente e contribui de modo favorável para o sistema, nos levando a uma melhor compreensão das mudanças conformacionais de HMGR após a ligação dos ligantes estatínicos e substrato HMG-CoA.Cholesterol is a substance of paramount importance for all animals. However, its high level in the human body is linked to the two major diseases that kill the world: ischemic heart disease and stroke. One of the synthetic drugs used in the treatment of hypercholesterolemia are statins, inhibitors of 3-hydroxy-3-methylglutaryl Cozyme A reductase (HMGR), which act primarily on the liver by inhibiting a conversion of the HMG-CoA substrate into mevalonic acid, which is the metabolite Cholesterol precursor. Studies Molecular Dynamics (MD) combined with Principal Component Analysis (PCA) were performed to verify the mechanism of the changes in the Cterminal Flap domain form (residues His861, Leu862, Val863, Lys864, Ser865 and Hys866) after binding substrate and efficient statins in inhibiting the HMGR enzyme. A total of 500 ns of MD simulation time were performed in this study. Binding Free Energies calculations were used, which estimate that the structural mechanism of the Flap is related to an action of the HMGR protein, since domain control or access to the active site of the enzyme. The results also show that the structural modification of Flap increases the energy contribution of the system by involving larger interactions with catalytic residues and, consequently, an ability to inhibit cholesterol production, as observed for the catalytic His866, which has a very favorable contribution when the Flap is in the closed state, with energy of -14,802 Kcal/mol, and when the Flap passes to the open state the contribution is less favorable, with -1,022 Kcal/mol, for 1 inhibitor, showing that in the closed state the catalytic residue is directly involved and contributes in a favorable way to the system, leading to a better understanding of the conformational changes of HMGR after a binding of statin derivatives and HMG-CoA substrate.FAPESPA - Fundação Amazônia de Amparo a Estudos e PesquisasporUniversidade Federal do ParáPrograma de Pós-Graduação em Química Medicinal e Modelagem MolecularUFPABrasilInstituto de Ciências da Saúdehttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível na internet via correio eletrônico: bibsaude@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::CIENCIAS DA SAUDE::FARMACIA::QUIMICA MODULARFARMACOLOGIA E TOXICOLOGIA CELULAR E MOLECULARQUÍMICA MEDICINALColesterolDomínio flapDinâmica molecularAnálise de componentes principaisCholesterolFlap domainMolecular dynamicsPrincipal component analysisEstudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livreinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisSILVA, Jerônimo Lameirahttp://lattes.cnpq.br/7711489635465954https://orcid.org/0000-0001-7270-1517http://lattes.cnpq.br/5389570050305558COSTA, Clauber Henrique Souza dahttps://orcid.org/0000-0002-6915-1056ORIGINALDissertacao_EstudoMecanismoConformacional.pdfDissertacao_EstudoMecanismoConformacional.pdfapplication/pdf12486074http://repositorio.ufpa.br/oai/bitstream/2011/14462/1/Dissertacao_EstudoMecanismoConformacional.pdf46a56778cd4e69fc54625550e7b9728aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.ufpa.br/oai/bitstream/2011/14462/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81890http://repositorio.ufpa.br/oai/bitstream/2011/14462/3/license.txt2b55adef5313c442051bad36d3312b2bMD532011/144622022-08-30 10:51:17.892oai:repositorio.ufpa.br:2011/14462TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232022-08-30T13:51:17Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false
dc.title.pt_BR.fl_str_mv Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
title Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
spellingShingle Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
COSTA, Clauber Henrique Souza da
CNPQ::CIENCIAS DA SAUDE::FARMACIA::QUIMICA MODULAR
Colesterol
Domínio flap
Dinâmica molecular
Análise de componentes principais
Cholesterol
Flap domain
Molecular dynamics
Principal component analysis
FARMACOLOGIA E TOXICOLOGIA CELULAR E MOLECULAR
QUÍMICA MEDICINAL
title_short Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
title_full Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
title_fullStr Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
title_full_unstemmed Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
title_sort Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre
author COSTA, Clauber Henrique Souza da
author_facet COSTA, Clauber Henrique Souza da
https://orcid.org/0000-0002-6915-1056
author_role author
author2 https://orcid.org/0000-0002-6915-1056
author2_role author
dc.contributor.advisor1ORCID.pt_BR.fl_str_mv https://orcid.org/0000-0001-7270-1517
dc.contributor.advisor1.fl_str_mv SILVA, Jerônimo Lameira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7711489635465954
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5389570050305558
dc.contributor.author.fl_str_mv COSTA, Clauber Henrique Souza da
https://orcid.org/0000-0002-6915-1056
contributor_str_mv SILVA, Jerônimo Lameira
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS DA SAUDE::FARMACIA::QUIMICA MODULAR
topic CNPQ::CIENCIAS DA SAUDE::FARMACIA::QUIMICA MODULAR
Colesterol
Domínio flap
Dinâmica molecular
Análise de componentes principais
Cholesterol
Flap domain
Molecular dynamics
Principal component analysis
FARMACOLOGIA E TOXICOLOGIA CELULAR E MOLECULAR
QUÍMICA MEDICINAL
dc.subject.por.fl_str_mv Colesterol
Domínio flap
Dinâmica molecular
Análise de componentes principais
Cholesterol
Flap domain
Molecular dynamics
Principal component analysis
dc.subject.linhadepesquisa.pt_BR.fl_str_mv FARMACOLOGIA E TOXICOLOGIA CELULAR E MOLECULAR
dc.subject.areadeconcentracao.pt_BR.fl_str_mv QUÍMICA MEDICINAL
description O colesterol é uma substância de extrema importância para todos os animais. Entretanto, seu alto nível no corpo humano está ligado às duas principais doenças que mais matam no mundo: cardiopatia isquêmica e AVC. Um dos medicamentos sintéticos já utilizados no tratamento da hipercolesterolemia são as estatinas, inibidoras da 3-hidroxi-3-metilglutaril Coezima A redutase (HMGR), que agem principalmente no fígado inibindo a conversão do substrato HMG-CoA em ácido mevalônico, que é o metabólito precursor do colesterol. Realizou-se estudos de Dinâmica Molecular (DM) combinados com Análise de Componentes Principais (PCA) para verificar o mecanismo das mudanças conformacionais do domínio Flap no Cterminal (resíduos His861, Leu862, Val863, Lys864, Ser865 e His866) após a ligação do substrato e de estatinas eficientes na inibição da enzima HMGR. Um total de 500 ns de Tempo de simulação de DM foram realizados neste estudo. Empregou-se cálculos de Energias Livres de Ligação, que indicaram que o mecanismo estrutural do Flap está relacionado diretamente com a ação da proteína HMGR, uma vez que esse domínio controla o acesso ao sítio ativo da enzima. Os resultados mostram também que a modificação estrutural do Flap aumenta a contribuição energética do sistema ao permitir maiores interações com os resíduos catalíticos e, consequentemente, a capacidade de inibir a produção do colesterol, como foi observado para a His866 catalítica, que tem contribuição bastante favorável quando o Flap está no estado fechado, com energia de -14,802 Kcal/mol, e quando o Flap passa para o estado aberto a contribuição é menos favorável, com -1,022 Kcal/mol, para o inibidor 1, mostrando que no estado fechado o resíduo catalítico está envolvido diretamente e contribui de modo favorável para o sistema, nos levando a uma melhor compreensão das mudanças conformacionais de HMGR após a ligação dos ligantes estatínicos e substrato HMG-CoA.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-03
dc.date.accessioned.fl_str_mv 2022-06-10T17:05:12Z
dc.date.available.fl_str_mv 2022-06-10T17:05:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, Clauber Henrique Souza da. Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre. Orientador: Jerônimo Lameira Silva. 2017. 96 f. Dissertação (Mestrado em Química Medicinal e Modelagem Molecular) – Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, 2017. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14462. Acesso em:.
dc.identifier.uri.fl_str_mv http://repositorio.ufpa.br:8080/jspui/handle/2011/14462
identifier_str_mv COSTA, Clauber Henrique Souza da. Estudo do mecanismo conformacional da proteína 3-hidroxi-3- metilglutaril Coenzima A Redutase (HMGR) com as estatinas e substrato através de Dinâmica Molecular, PCA e Energia Livre. Orientador: Jerônimo Lameira Silva. 2017. 96 f. Dissertação (Mestrado em Química Medicinal e Modelagem Molecular) – Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, 2017. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14462. Acesso em:.
url http://repositorio.ufpa.br:8080/jspui/handle/2011/14462
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pará
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química Medicinal e Modelagem Molecular
dc.publisher.initials.fl_str_mv UFPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Pará
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPA
instname:Universidade Federal do Pará (UFPA)
instacron:UFPA
instname_str Universidade Federal do Pará (UFPA)
instacron_str UFPA
institution UFPA
reponame_str Repositório Institucional da UFPA
collection Repositório Institucional da UFPA
dc.source.uri.pt_BR.fl_str_mv Disponível na internet via correio eletrônico: bibsaude@ufpa.br
bitstream.url.fl_str_mv http://repositorio.ufpa.br/oai/bitstream/2011/14462/1/Dissertacao_EstudoMecanismoConformacional.pdf
http://repositorio.ufpa.br/oai/bitstream/2011/14462/2/license_rdf
http://repositorio.ufpa.br/oai/bitstream/2011/14462/3/license.txt
bitstream.checksum.fl_str_mv 46a56778cd4e69fc54625550e7b9728a
e39d27027a6cc9cb039ad269a5db8e34
2b55adef5313c442051bad36d3312b2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)
repository.mail.fl_str_mv riufpabc@ufpa.br
_version_ 1801771860645380096