Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means

Detalhes bibliográficos
Autor(a) principal: LIMA, Flávia Ayana Nascimento de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPA
Texto Completo: http://repositorio.ufpa.br/jspui/handle/2011/9470
Resumo: O constante avanço da tecnologia requer medidas que beneficiem as indústrias em busca do lucro e da competitividade. Em relação à indústria de minerais, o processo de fundição de alumínio geralmente possui grande número de células, também chamado de forno ou cuba de redução, produzindo alumínio em um procedimento contínuo e complexo. Um monitoramento analítico é essencial para aumentar a vantagem competitiva dessa indústria, por exemplo, durante a operação, algumas células compartilham comportamentos semelhantes às outras, formando grupos ou clusters de células. Esses clusters dependem de padrões de dados geralmente implícitos ou invisíveis para a operação, mas que podem ser encontrados por meio da análise de dados. Neste trabalho, são apresentadas quatro técnicas de agrupamento, o Affinity Propagation, o mapa auto–organizável de Kohonen (SOM), o algoritmo difuso Fuzzy C–Means (FCM) e o K–Means. Essas técnicas são utilizadas para encontrar e agrupar as células que apresentam comportamentos semelhantes, de acordo com sete variáveis tais como as que consiste no processo de redução do alumínio. Este trabalho visa trazer o benefício do agrupamento, principalmente pela simplificação da análise da linha de produção do alumínio, uma vez que um grande número de células pode se resumir em um único grupo, o que pode fornecer informações mais compactas para o controle e a modelagem dos dados. Este benefício de identificar os dados que possuem características semelhantes e agrupá–los faz com que a análise dos grupos se torne mais simples para quem irá manusear esses dados futuramente. Nesse trabalho de dissertação também será feito a identificação da quantidade ideal de grupo em cada técnica utilizada.
id UFPA_6a5b960a3cd6eb2405ed24a0f4226060
oai_identifier_str oai:repositorio.ufpa.br:2011/9470
network_acronym_str UFPA
network_name_str Repositório Institucional da UFPA
repository_id_str 2123
spelling 2018-02-21T13:23:06Z2018-02-21T13:23:06Z2017-10-11LIMA, Flávia Ayana Nascimento de. Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (SOM), Fuzzy C–Means e K–Means. 2017. 117 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2017. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9470>. Acesso em:.http://repositorio.ufpa.br/jspui/handle/2011/9470O constante avanço da tecnologia requer medidas que beneficiem as indústrias em busca do lucro e da competitividade. Em relação à indústria de minerais, o processo de fundição de alumínio geralmente possui grande número de células, também chamado de forno ou cuba de redução, produzindo alumínio em um procedimento contínuo e complexo. Um monitoramento analítico é essencial para aumentar a vantagem competitiva dessa indústria, por exemplo, durante a operação, algumas células compartilham comportamentos semelhantes às outras, formando grupos ou clusters de células. Esses clusters dependem de padrões de dados geralmente implícitos ou invisíveis para a operação, mas que podem ser encontrados por meio da análise de dados. Neste trabalho, são apresentadas quatro técnicas de agrupamento, o Affinity Propagation, o mapa auto–organizável de Kohonen (SOM), o algoritmo difuso Fuzzy C–Means (FCM) e o K–Means. Essas técnicas são utilizadas para encontrar e agrupar as células que apresentam comportamentos semelhantes, de acordo com sete variáveis tais como as que consiste no processo de redução do alumínio. Este trabalho visa trazer o benefício do agrupamento, principalmente pela simplificação da análise da linha de produção do alumínio, uma vez que um grande número de células pode se resumir em um único grupo, o que pode fornecer informações mais compactas para o controle e a modelagem dos dados. Este benefício de identificar os dados que possuem características semelhantes e agrupá–los faz com que a análise dos grupos se torne mais simples para quem irá manusear esses dados futuramente. Nesse trabalho de dissertação também será feito a identificação da quantidade ideal de grupo em cada técnica utilizada.The continuous development of technology accounts for measures that provide industries benefits to grant them profitability and competitive advantage. In the mineralogy field, aluminum smelting usually requires substantial number of cells, also known as reduction pots, to produce aluminum in a continuous and complex process. Analytical monitoring is essential for those industries’ competitive advantage, given that during operation some cells show behavior similar to others, thereby forming clusters of cells. These clusters depend on data patterns usually implicit or invisible for the operation, but can be found by data analysis techniques. In this work four clustering techniques are presented to that end: the Affinity Propagation; the Kohonen Self Organizing Map; the Fuzzy C–Means; and the K–Means Algorithm. These techniques are used to find and group cells that share similar behavior, by analysing seven variables which are closely related to the aluminum reduction process. This work aims at addressing the benefits of clustering, especially by simplifying the aluminum potline analysis, once a large group of cells might be summarized in one sole group, what can provide more compact yet rich information for data driven modeling and control. Moreover, the identification of similar data patterns in clusters makes the task of those who is going to be in charge of analyzing these dats. This work also identifies the ideal cluster size for each technique applied.porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de Tecnologia1 CD-ROMreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADAAgrupamento - TécnicasRedução do alumínioMineração de dadosAgrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Meansinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOLIVEIRA, Roberto Célio Limão dehttp://lattes.cnpq.br/4497607460894318CARDOSO, Diego Lisboahttp://lattes.cnpq.br/0507944343674734http://lattes.cnpq.br/6210970072715614LIMA, Flávia Ayana Nascimento deinfo:eu-repo/semantics/openAccessORIGINALDissertacao_AgrupamentoFornosReducao.pdfDissertacao_AgrupamentoFornosReducao.pdfapplication/pdf6297988http://repositorio.ufpa.br/oai/bitstream/2011/9470/1/Dissertacao_AgrupamentoFornosReducao.pdf9e3c95180dbdfbdbc60f142c239aeb87MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufpa.br/oai/bitstream/2011/9470/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/9470/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.ufpa.br/oai/bitstream/2011/9470/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81899http://repositorio.ufpa.br/oai/bitstream/2011/9470/5/license.txt9d4d300cff78e8f375d89aab37134138MD55TEXTDissertacao_AgrupamentoFornosReducao.pdf.txtDissertacao_AgrupamentoFornosReducao.pdf.txtExtracted texttext/plain211098http://repositorio.ufpa.br/oai/bitstream/2011/9470/6/Dissertacao_AgrupamentoFornosReducao.pdf.txt6a651d1f67533581d8c333a71cc5cfe0MD562011/94702018-02-22 02:20:37.831oai:repositorio.ufpa.br:2011/9470TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gCnBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgbyBSSVVGUEEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgCmUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHB1YmxpY2HDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSAKbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIApkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgcHVibGljYcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIApvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUklVRlBBIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyAKbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIApPUkdBTklTTU8sIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyAKRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUklVRlBBIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232018-02-22T05:20:37Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false
dc.title.pt_BR.fl_str_mv Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
title Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
spellingShingle Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
LIMA, Flávia Ayana Nascimento de
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Agrupamento - Técnicas
Redução do alumínio
Mineração de dados
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
title_short Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
title_full Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
title_fullStr Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
title_full_unstemmed Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
title_sort Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (som), Fuzzy C–Means e K–Means
author LIMA, Flávia Ayana Nascimento de
author_facet LIMA, Flávia Ayana Nascimento de
author_role author
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Roberto Célio Limão de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4497607460894318
dc.contributor.advisor-co1.fl_str_mv CARDOSO, Diego Lisboa
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0507944343674734
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6210970072715614
dc.contributor.author.fl_str_mv LIMA, Flávia Ayana Nascimento de
contributor_str_mv OLIVEIRA, Roberto Célio Limão de
CARDOSO, Diego Lisboa
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Agrupamento - Técnicas
Redução do alumínio
Mineração de dados
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
dc.subject.por.fl_str_mv Agrupamento - Técnicas
Redução do alumínio
Mineração de dados
dc.subject.linhadepesquisa.pt_BR.fl_str_mv INTELIGÊNCIA COMPUTACIONAL
dc.subject.areadeconcentracao.pt_BR.fl_str_mv COMPUTAÇÃO APLICADA
description O constante avanço da tecnologia requer medidas que beneficiem as indústrias em busca do lucro e da competitividade. Em relação à indústria de minerais, o processo de fundição de alumínio geralmente possui grande número de células, também chamado de forno ou cuba de redução, produzindo alumínio em um procedimento contínuo e complexo. Um monitoramento analítico é essencial para aumentar a vantagem competitiva dessa indústria, por exemplo, durante a operação, algumas células compartilham comportamentos semelhantes às outras, formando grupos ou clusters de células. Esses clusters dependem de padrões de dados geralmente implícitos ou invisíveis para a operação, mas que podem ser encontrados por meio da análise de dados. Neste trabalho, são apresentadas quatro técnicas de agrupamento, o Affinity Propagation, o mapa auto–organizável de Kohonen (SOM), o algoritmo difuso Fuzzy C–Means (FCM) e o K–Means. Essas técnicas são utilizadas para encontrar e agrupar as células que apresentam comportamentos semelhantes, de acordo com sete variáveis tais como as que consiste no processo de redução do alumínio. Este trabalho visa trazer o benefício do agrupamento, principalmente pela simplificação da análise da linha de produção do alumínio, uma vez que um grande número de células pode se resumir em um único grupo, o que pode fornecer informações mais compactas para o controle e a modelagem dos dados. Este benefício de identificar os dados que possuem características semelhantes e agrupá–los faz com que a análise dos grupos se torne mais simples para quem irá manusear esses dados futuramente. Nesse trabalho de dissertação também será feito a identificação da quantidade ideal de grupo em cada técnica utilizada.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10-11
dc.date.accessioned.fl_str_mv 2018-02-21T13:23:06Z
dc.date.available.fl_str_mv 2018-02-21T13:23:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Flávia Ayana Nascimento de. Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (SOM), Fuzzy C–Means e K–Means. 2017. 117 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2017. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9470>. Acesso em:.
dc.identifier.uri.fl_str_mv http://repositorio.ufpa.br/jspui/handle/2011/9470
identifier_str_mv LIMA, Flávia Ayana Nascimento de. Agrupamento de fornos de redução de alumínio utilizando os algoritmos Affinity Propagation, Mapa auto–organizável de Kohonen (SOM), Fuzzy C–Means e K–Means. 2017. 117 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2017. Programa de Pós-Graduação em Engenharia Elétrica. Disponível em: <http://repositorio.ufpa.br/jspui/handle/2011/9470>. Acesso em:.
url http://repositorio.ufpa.br/jspui/handle/2011/9470
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pará
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal do Pará
dc.source.pt_BR.fl_str_mv 1 CD-ROM
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPA
instname:Universidade Federal do Pará (UFPA)
instacron:UFPA
instname_str Universidade Federal do Pará (UFPA)
instacron_str UFPA
institution UFPA
reponame_str Repositório Institucional da UFPA
collection Repositório Institucional da UFPA
bitstream.url.fl_str_mv http://repositorio.ufpa.br/oai/bitstream/2011/9470/1/Dissertacao_AgrupamentoFornosReducao.pdf
http://repositorio.ufpa.br/oai/bitstream/2011/9470/2/license_url
http://repositorio.ufpa.br/oai/bitstream/2011/9470/3/license_text
http://repositorio.ufpa.br/oai/bitstream/2011/9470/4/license_rdf
http://repositorio.ufpa.br/oai/bitstream/2011/9470/5/license.txt
http://repositorio.ufpa.br/oai/bitstream/2011/9470/6/Dissertacao_AgrupamentoFornosReducao.pdf.txt
bitstream.checksum.fl_str_mv 9e3c95180dbdfbdbc60f142c239aeb87
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
9d4d300cff78e8f375d89aab37134138
6a651d1f67533581d8c333a71cc5cfe0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)
repository.mail.fl_str_mv riufpabc@ufpa.br
_version_ 1801771837810540544