Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity

Detalhes bibliográficos
Autor(a) principal: Rêgo, Thiago Luiz de Oliveira do
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/20337
Resumo: In this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory.
id UFPB_024d0729a4541199c535d27b650ce17c
oai_identifier_str oai:repositorio.ufpb.br:123456789/20337
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearityFractional laplacianFractional Kirchhoff problemsNodal solutionsGround state solutionsTrudinger-Moser inequalityLaplaciano fracionárioProblemas de Kirchhoff fracionárioSoluções nodaisSoluções de energia mínimaDesigualdade de Trudinger-MoserCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAIn this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESNeste trabalho, estudamos existência de soluções ground state e soluções nodais de energia mínima para quatro classes de problemas envolvendo o operador Laplaciano fracionário com não linearidades que podem possuir crescimento exponencial crítico no sentido da desigualdade de Trudinguer-Moser. Provamos que as soluções ground state possuem sinal definido e mostramos que o nível nodal de energia mínima é maior que o dobro da energia ground state. O primeiro problema é definido num intervalo aberto e limitado de R e o segundo é definido em toda a reta real, ambos envolvendo o operador 1/2−Laplaciano. O terceiro problema, também com o operador 1/2−Laplaciano e definido em um intervalo limitado da reta real, é do tipo Kirchhoff- fracionário com função de Kirchhoff da forma mb(t) = a+bt, com a, b > 0. Mostramos a existência de uma solução nodal de energia mínima, uma solução não negativa e uma solução não positiva, cada uma dessas possuindo energia mínima entre as soluções com sinal definido. Ainda neste caso, estudamos o comportamento assintótico das soluções nodais, quando b → 0 +. O último problema abordado é definido em um domínio limitado Ω ⊂ R N , N ≥ 2, com fronteira Lipschitz ∂Ω e envolve o operador N/s−Laplaciano fracionário, s ∈ (0, 1). Nesse caso, também encontramos uma solução nodal de energia mínima e soluções não triviais não negativa e não positiva ambas de menor energia entre as soluções com sinal definido. As principais ferramentas usadas nesse trabalho são: desigualdades do tipo Trudiguer-Moser, métodos variacionais, lema da deformação e teoria do grau.Universidade Federal da ParaíbaBrasilMatemáticaPrograma Associado de Pós-Graduação em MatemáticaUFPBSouza, Manassés Xavier dehttp://lattes.cnpq.br/9089672453935668Severo, Uberlandio Batistahttp://lattes.cnpq.br/1311942898923026Rêgo, Thiago Luiz de Oliveira do2021-07-06T19:56:51Z2020-09-182021-07-06T19:56:51Z2020-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/20337porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-10T11:34:12Zoai:repositorio.ufpb.br:123456789/20337Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-10T11:34:12Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
title Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
spellingShingle Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
Rêgo, Thiago Luiz de Oliveira do
Fractional laplacian
Fractional Kirchhoff problems
Nodal solutions
Ground state solutions
Trudinger-Moser inequality
Laplaciano fracionário
Problemas de Kirchhoff fracionário
Soluções nodais
Soluções de energia mínima
Desigualdade de Trudinger-Moser
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
title_full Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
title_fullStr Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
title_full_unstemmed Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
title_sort Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
author Rêgo, Thiago Luiz de Oliveira do
author_facet Rêgo, Thiago Luiz de Oliveira do
author_role author
dc.contributor.none.fl_str_mv Souza, Manassés Xavier de
http://lattes.cnpq.br/9089672453935668
Severo, Uberlandio Batista
http://lattes.cnpq.br/1311942898923026
dc.contributor.author.fl_str_mv Rêgo, Thiago Luiz de Oliveira do
dc.subject.por.fl_str_mv Fractional laplacian
Fractional Kirchhoff problems
Nodal solutions
Ground state solutions
Trudinger-Moser inequality
Laplaciano fracionário
Problemas de Kirchhoff fracionário
Soluções nodais
Soluções de energia mínima
Desigualdade de Trudinger-Moser
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic Fractional laplacian
Fractional Kirchhoff problems
Nodal solutions
Ground state solutions
Trudinger-Moser inequality
Laplaciano fracionário
Problemas de Kirchhoff fracionário
Soluções nodais
Soluções de energia mínima
Desigualdade de Trudinger-Moser
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-18
2020-07-30
2021-07-06T19:56:51Z
2021-07-06T19:56:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/20337
url https://repositorio.ufpb.br/jspui/handle/123456789/20337
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842976464306176