Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/20337 |
Resumo: | In this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory. |
id |
UFPB_024d0729a4541199c535d27b650ce17c |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/20337 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearityFractional laplacianFractional Kirchhoff problemsNodal solutionsGround state solutionsTrudinger-Moser inequalityLaplaciano fracionárioProblemas de Kirchhoff fracionárioSoluções nodaisSoluções de energia mínimaDesigualdade de Trudinger-MoserCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAIn this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESNeste trabalho, estudamos existência de soluções ground state e soluções nodais de energia mínima para quatro classes de problemas envolvendo o operador Laplaciano fracionário com não linearidades que podem possuir crescimento exponencial crítico no sentido da desigualdade de Trudinguer-Moser. Provamos que as soluções ground state possuem sinal definido e mostramos que o nível nodal de energia mínima é maior que o dobro da energia ground state. O primeiro problema é definido num intervalo aberto e limitado de R e o segundo é definido em toda a reta real, ambos envolvendo o operador 1/2−Laplaciano. O terceiro problema, também com o operador 1/2−Laplaciano e definido em um intervalo limitado da reta real, é do tipo Kirchhoff- fracionário com função de Kirchhoff da forma mb(t) = a+bt, com a, b > 0. Mostramos a existência de uma solução nodal de energia mínima, uma solução não negativa e uma solução não positiva, cada uma dessas possuindo energia mínima entre as soluções com sinal definido. Ainda neste caso, estudamos o comportamento assintótico das soluções nodais, quando b → 0 +. O último problema abordado é definido em um domínio limitado Ω ⊂ R N , N ≥ 2, com fronteira Lipschitz ∂Ω e envolve o operador N/s−Laplaciano fracionário, s ∈ (0, 1). Nesse caso, também encontramos uma solução nodal de energia mínima e soluções não triviais não negativa e não positiva ambas de menor energia entre as soluções com sinal definido. As principais ferramentas usadas nesse trabalho são: desigualdades do tipo Trudiguer-Moser, métodos variacionais, lema da deformação e teoria do grau.Universidade Federal da ParaíbaBrasilMatemáticaPrograma Associado de Pós-Graduação em MatemáticaUFPBSouza, Manassés Xavier dehttp://lattes.cnpq.br/9089672453935668Severo, Uberlandio Batistahttp://lattes.cnpq.br/1311942898923026Rêgo, Thiago Luiz de Oliveira do2021-07-06T19:56:51Z2020-09-182021-07-06T19:56:51Z2020-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/20337porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-10T11:34:12Zoai:repositorio.ufpb.br:123456789/20337Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-10T11:34:12Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
title |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
spellingShingle |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity Rêgo, Thiago Luiz de Oliveira do Fractional laplacian Fractional Kirchhoff problems Nodal solutions Ground state solutions Trudinger-Moser inequality Laplaciano fracionário Problemas de Kirchhoff fracionário Soluções nodais Soluções de energia mínima Desigualdade de Trudinger-Moser CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
title_full |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
title_fullStr |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
title_full_unstemmed |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
title_sort |
Ground state and nodal solutions for some elliptic equations involving the fractional Laplacian operator and Trudinger-Moser nonlinearity |
author |
Rêgo, Thiago Luiz de Oliveira do |
author_facet |
Rêgo, Thiago Luiz de Oliveira do |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Manassés Xavier de http://lattes.cnpq.br/9089672453935668 Severo, Uberlandio Batista http://lattes.cnpq.br/1311942898923026 |
dc.contributor.author.fl_str_mv |
Rêgo, Thiago Luiz de Oliveira do |
dc.subject.por.fl_str_mv |
Fractional laplacian Fractional Kirchhoff problems Nodal solutions Ground state solutions Trudinger-Moser inequality Laplaciano fracionário Problemas de Kirchhoff fracionário Soluções nodais Soluções de energia mínima Desigualdade de Trudinger-Moser CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Fractional laplacian Fractional Kirchhoff problems Nodal solutions Ground state solutions Trudinger-Moser inequality Laplaciano fracionário Problemas de Kirchhoff fracionário Soluções nodais Soluções de energia mínima Desigualdade de Trudinger-Moser CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we study the existence of ground state and least energy nodal solutions for four classes of problems involving the fractional Laplacian operator with nonlinearities that may have critical exponential growth in the sense of the Trudinguer-Moser inequality. We prove that ground state solutions have a defined signal and we show that the least energy nodal level is greater than twice the ground state level. The first problem is defined in an open bounded interval of R and the second one is defined in the whole real line, both involving the 1/2−Laplacian operator. The third problem, also with the 1/2−Laplacian operator and defined in an open bounded interval, is of Kirchhoff-fractional type with Kirchhoff function of the form mb(t) = a + bt, with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative solution and a nonpositive solution, each of which has minimum energy between the solutions with defined signal. In this case, we also study the asymptotic behavior of nodal solutions, when b → 0+. The last problem addressed is defined in a bounded domain Ω ⊂ R N , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal solution and nontrivial nonnegative and nonpositive solutions, which have minimum energy between the solutions with de ned signal. The main tools used in this study are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and degree theory. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-18 2020-07-30 2021-07-06T19:56:51Z 2021-07-06T19:56:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/20337 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/20337 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842976464306176 |