On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors

Detalhes bibliográficos
Autor(a) principal: Cruz Júnior, Francisco Calvi da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/20336
Resumo: This work was divided into two moments: at first, we set out to study spacelike sub manifolds Σn immersed in Lorentz spacetimes Mn+p+1. So, we introduce the notion of r-trapped submanifolds as a generalization of the trapped submanifolds introduced by Penrose. In the case where the ambient space is a GRW −I ×ρ Mn+p, considering some properties such as parabolicity and stochastic completeness we prove rigidity and nonexistence results for r-trapped in some configurations of GRW spacetimes and, lastly, we provide examples of r-trapped submanifolds, some of them are also simultaneously trapped, but we provided examples proving that the notion of r-trapped submanifolds are different accordingly to the number r. On the other hand, in the case where the ambient space is an standard static spacetime (SSST) Mn+p ×ρ R1, we calculate the differential operators Lr and Lr,φ applied to the height function h = πR ◦ψ of the immersion ψ : Σn → Mn+p ×ρ R1 and we consider some properties on Σn such as parabolicity and maximum principles. In this setting, we prove rigidity and nonexistence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-Topping type inequalities for general tensors under constraints in the Bakry-Émery Ricci tensor. In particular, we provide new results on manifolds with convex boundary, improving some known results given on manifolds with totally geodesic boundary. Furthemore, we apply our results in a class of locally conserved tensors.
id UFPB_70eeda3823c2a6c871448304bcb0522c
oai_identifier_str oai:repositorio.ufpb.br:123456789/20336
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensorsRigidityr-trapped submanifoldsGRW spacetimeSSSTDe Lellis-Topping InequalityWeighted manifoldsBakry-Émery-Ricci tensordrifting LaplacianRigidezSubvariedades r-trappedEspaço-tempo GRWDesigualdade De Lellis-ToppingVariedades ponderadasTensor Bakry-Émery-RicciLaplaciano ponderadoCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThis work was divided into two moments: at first, we set out to study spacelike sub manifolds Σn immersed in Lorentz spacetimes Mn+p+1. So, we introduce the notion of r-trapped submanifolds as a generalization of the trapped submanifolds introduced by Penrose. In the case where the ambient space is a GRW −I ×ρ Mn+p, considering some properties such as parabolicity and stochastic completeness we prove rigidity and nonexistence results for r-trapped in some configurations of GRW spacetimes and, lastly, we provide examples of r-trapped submanifolds, some of them are also simultaneously trapped, but we provided examples proving that the notion of r-trapped submanifolds are different accordingly to the number r. On the other hand, in the case where the ambient space is an standard static spacetime (SSST) Mn+p ×ρ R1, we calculate the differential operators Lr and Lr,φ applied to the height function h = πR ◦ψ of the immersion ψ : Σn → Mn+p ×ρ R1 and we consider some properties on Σn such as parabolicity and maximum principles. In this setting, we prove rigidity and nonexistence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-Topping type inequalities for general tensors under constraints in the Bakry-Émery Ricci tensor. In particular, we provide new results on manifolds with convex boundary, improving some known results given on manifolds with totally geodesic boundary. Furthemore, we apply our results in a class of locally conserved tensors.NenhumaEste trabalho foi dividido em dois momentos: no primeiro, nos dedicamos ao estudo de subvariedades tipo-espaço Σn imersas em espaços-tempo Lorentzianos Mn+p+1. Assim, introduzimos a noção de subvariedades r-trapped como generalização das subvariedades trapped introduzidas por Penrose. No caso em que o espaço ambiente é um GRW −I ×ρ Mn+p, considerando algumas propriedades como parabolicidade e completude estocástica, fornecemos resultados de rigidez e de não existência para subvariedades r-trapped em algumas configurações de espaços-tempo GRW e, por último, fornecemos exemplos de subvariedades r-trapped, onde algumas delas são trapped e outras não, comprovando que a noção de subvariedades r-trapped são diferentes de acordo com o número r. Por outro lado, no caso em que o espaço ambiente é um standard static spacetime (SSST) Mn+p×ρR1, calculamos os operadores diferenciais Lr e Lr,φ aplicados à função altura h = πR ◦ ψ da imersão ψ : Σn → Mn+p ×ρ R1 e consideramos algumas propriedades em Σn como parabolicidade e princípios de máximo. Neste cenário, fornecemos resultados de rigidez e de não existência para subvariedades r-trapped. Depois, obtemos algumas desigualdades do tipo De Lellis-Topping para tensores gerais sob restrições no tensor Bakry-Émery Ricci. Em particular, fornecemos novos resultados em variedades com bordo convexo, melhorando alguns resultados conhecidos em variedades com bordo totalmente geodésico. Além disso, aplicamos nossos resultados em uma classe de tensores localmente conservativos.Universidade Federal da ParaíbaBrasilMatemáticaPrograma Associado de Pós-Graduação em MatemáticaUFPBLima Júnior, Eraldo Almeidahttp://lattes.cnpq.br/8249061910928115Freitas, Allan George de Carvalhohttp://lattes.cnpq.br/2190744931508384Cruz Júnior, Francisco Calvi da2021-07-06T19:55:41Z2020-12-212021-07-06T19:55:41Z2020-11-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/20336enghttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-10T11:34:24Zoai:repositorio.ufpb.br:123456789/20336Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-10T11:34:24Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
title On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
spellingShingle On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
Cruz Júnior, Francisco Calvi da
Rigidity
r-trapped submanifolds
GRW spacetime
SSST
De Lellis-Topping Inequality
Weighted manifolds
Bakry-Émery-Ricci tensor
drifting Laplacian
Rigidez
Subvariedades r-trapped
Espaço-tempo GRW
Desigualdade De Lellis-Topping
Variedades ponderadas
Tensor Bakry-Émery-Ricci
Laplaciano ponderado
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
title_full On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
title_fullStr On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
title_full_unstemmed On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
title_sort On r-trapped immersions in Lorentzian spacetimes and a weighted inequality for tensors
author Cruz Júnior, Francisco Calvi da
author_facet Cruz Júnior, Francisco Calvi da
author_role author
dc.contributor.none.fl_str_mv Lima Júnior, Eraldo Almeida
http://lattes.cnpq.br/8249061910928115
Freitas, Allan George de Carvalho
http://lattes.cnpq.br/2190744931508384
dc.contributor.author.fl_str_mv Cruz Júnior, Francisco Calvi da
dc.subject.por.fl_str_mv Rigidity
r-trapped submanifolds
GRW spacetime
SSST
De Lellis-Topping Inequality
Weighted manifolds
Bakry-Émery-Ricci tensor
drifting Laplacian
Rigidez
Subvariedades r-trapped
Espaço-tempo GRW
Desigualdade De Lellis-Topping
Variedades ponderadas
Tensor Bakry-Émery-Ricci
Laplaciano ponderado
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic Rigidity
r-trapped submanifolds
GRW spacetime
SSST
De Lellis-Topping Inequality
Weighted manifolds
Bakry-Émery-Ricci tensor
drifting Laplacian
Rigidez
Subvariedades r-trapped
Espaço-tempo GRW
Desigualdade De Lellis-Topping
Variedades ponderadas
Tensor Bakry-Émery-Ricci
Laplaciano ponderado
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This work was divided into two moments: at first, we set out to study spacelike sub manifolds Σn immersed in Lorentz spacetimes Mn+p+1. So, we introduce the notion of r-trapped submanifolds as a generalization of the trapped submanifolds introduced by Penrose. In the case where the ambient space is a GRW −I ×ρ Mn+p, considering some properties such as parabolicity and stochastic completeness we prove rigidity and nonexistence results for r-trapped in some configurations of GRW spacetimes and, lastly, we provide examples of r-trapped submanifolds, some of them are also simultaneously trapped, but we provided examples proving that the notion of r-trapped submanifolds are different accordingly to the number r. On the other hand, in the case where the ambient space is an standard static spacetime (SSST) Mn+p ×ρ R1, we calculate the differential operators Lr and Lr,φ applied to the height function h = πR ◦ψ of the immersion ψ : Σn → Mn+p ×ρ R1 and we consider some properties on Σn such as parabolicity and maximum principles. In this setting, we prove rigidity and nonexistence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-Topping type inequalities for general tensors under constraints in the Bakry-Émery Ricci tensor. In particular, we provide new results on manifolds with convex boundary, improving some known results given on manifolds with totally geodesic boundary. Furthemore, we apply our results in a class of locally conserved tensors.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21
2020-11-10
2021-07-06T19:55:41Z
2021-07-06T19:55:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/20336
url https://repositorio.ufpb.br/jspui/handle/123456789/20336
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842976458014720