Classificação de cafés solúveis usando espectroscopia NIR e quimiometria

Detalhes bibliográficos
Autor(a) principal: Nóbrega, Rossana Oliveira da
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/123456789/21560
Resumo: Soluble coffee is a drink obtained from the dehydration of roasted coffee extract, the quality of which is characterized by its organoleptic properties, which depend on several factors, such as grain variability, caffeine extraction, grinding, roasting process, among others. However, the quality of this product must be monitored to ensure food safety and acceptance by consumers and regulatory bodies. Thus, this work aimed to develop green analytical methodologies based on bench and portable Near Infrared Spectroscopy (NIR: near infrared spectroscopy) and chemometric to assess the conformity of commercial soluble coffees, regarding the type and degree of roast. The first approach of the study is to classify the samples of soluble decaffeinated coffees in relation to regular soluble coffee (with caffeine), using Data-Driven Independent and Flexible Class Analogy Modeling (DD-SIMCA: Data-Driven – Soft Independent Modeling of Class Analogy) on both bench-top and portable NIR equipment. In this approach, the results obtained were 100% sensitivity, specificity, and accuracy. In the second approach, regular soluble coffees were classified with respect to roasting, traditional and extra-strong, using Partial Least Squares Discriminant Analysis (PLSDA) and the Successive Projections Algorithm for selection of intervals in PLS-DA (iSPA-PLS-DA: Successive Projections Algorithm for Interval Selection in Partial Least-Squares). For bench-top NIR spectra, the best result was obtained with the iSPA-PLS-DA method, when using the moving average pre-processing with multiplicative scatter correction (MM+MSC), reaching 96.7% of accuracy rate in the discrimination of samples in their respective classes. In the case of portable NIR, the best sorting performance was observed for iSPA-PLS-DA with moving average preprocessing and baseline offset correction (MM+BO), with 98% accuracy. Therefore, this study showed the potential of NIR spectroscopy together with chemometric classification tools for rapid, non-destructive, and direct analysis of soluble coffee, which can be useful for evaluating quality parameters during the industrial process, as well as the finished product.
id UFPB_79701bea148bd43ae2cb6d085f64f389
oai_identifier_str oai:repositorio.ufpb.br:123456789/21560
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Classificação de cafés solúveis usando espectroscopia NIR e quimiometriaCaféespectroscopia NIRDD-SIMCAPLS-DAiSPA-PLS-DACoffeeNIR spectroscopyCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICASoluble coffee is a drink obtained from the dehydration of roasted coffee extract, the quality of which is characterized by its organoleptic properties, which depend on several factors, such as grain variability, caffeine extraction, grinding, roasting process, among others. However, the quality of this product must be monitored to ensure food safety and acceptance by consumers and regulatory bodies. Thus, this work aimed to develop green analytical methodologies based on bench and portable Near Infrared Spectroscopy (NIR: near infrared spectroscopy) and chemometric to assess the conformity of commercial soluble coffees, regarding the type and degree of roast. The first approach of the study is to classify the samples of soluble decaffeinated coffees in relation to regular soluble coffee (with caffeine), using Data-Driven Independent and Flexible Class Analogy Modeling (DD-SIMCA: Data-Driven – Soft Independent Modeling of Class Analogy) on both bench-top and portable NIR equipment. In this approach, the results obtained were 100% sensitivity, specificity, and accuracy. In the second approach, regular soluble coffees were classified with respect to roasting, traditional and extra-strong, using Partial Least Squares Discriminant Analysis (PLSDA) and the Successive Projections Algorithm for selection of intervals in PLS-DA (iSPA-PLS-DA: Successive Projections Algorithm for Interval Selection in Partial Least-Squares). For bench-top NIR spectra, the best result was obtained with the iSPA-PLS-DA method, when using the moving average pre-processing with multiplicative scatter correction (MM+MSC), reaching 96.7% of accuracy rate in the discrimination of samples in their respective classes. In the case of portable NIR, the best sorting performance was observed for iSPA-PLS-DA with moving average preprocessing and baseline offset correction (MM+BO), with 98% accuracy. Therefore, this study showed the potential of NIR spectroscopy together with chemometric classification tools for rapid, non-destructive, and direct analysis of soluble coffee, which can be useful for evaluating quality parameters during the industrial process, as well as the finished product.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO café solúvel é uma bebida obtida a partir da desidratação do extrato de café torrado, cuja qualidade é caracterizada por suas propriedades organolépticas, que depende de diversos fatores, como a variabilidade do grão, extração da cafeína, moagem, processo de torra, entre outros. Contudo, a qualidade desse produto deve ser monitorada para garantir a segurança alimentar e aceitação por parte dos consumidores e órgãos reguladores. Assim, este trabalho objetivou desenvolver metodologias analíticas verdes baseadas em Espectroscopia do Infravermelho Próximo (NIR: near infrared spectroscopy) de bancada e portátil e quimiometria para avaliação da conformidade dos cafés solúveis comerciais, a respeito do tipo e grau de torra. A primeira abordagem do estudo consiste na classificação das amostras de cafés solúveis descafeinado em relação ao café solúvel regular (com cafeína), utilizando a Modelagem Independente e Flexível por Analogia de Classes direcionada pelos dados (DD-SIMCA: Data-Driven – Soft Independent Modelling of Class Analogy), em ambos os equipamentos NIR de bancada e NIR portátil. Nessa abordagem, os resultados obtidos foram 100% de sensibilidade, especificidade e acurácia. Na segunda abordagem, os cafés solúveis regulares foram classificados a respeito do grau de torra, tradicional e extraforte, utilizando Análise Discriminante por Mínimos Quadrados Parciais (PLS-DA: Partial Least Squares Discriminant Analysis) e o Algoritmo de Projeções Sucessivas para seleção de intervalos em PLS-DA (iSPAPLS- DA: Successive Projections Algorithm for Interval Selection in Partial Least- Squares). Para os espectros do NIR de bancada, obteve-se o melhor resultado com o método iSPA-PLS-DA, ao usar o pré-processamento média móvel com correção de espalhamento multiplicativo (MM+MSC), alcançando 96,7% de taxa de acurácia na discriminação das amostras em suas respectivas classes. No caso do NIR portátil, o melhor desempenho de classificação foi observado para iSPA-PLS-DA com o préprocessamento média móvel e correção de linha de base offset (MM+BO), com 98% de acurácia. Portanto, este estudo mostrou o potencial da espectroscopia NIR juntamente com as ferramentas quimiométricas de classificação para análise rápida, não destrutiva e direta do café solúvel, e que podem ser úteis para avaliação dos parâmetros de qualidade durante o processo industrial, bem como do produto acabado.Universidade Federal da ParaíbaBrasilQuímicaPrograma de Pós-Graduação em QuímicaUFPBAraújo, Mário Cesar Ugulino dehttp://lattes.cnpq.br/7281739070942782Fernandes, David Douglas de Sousahttp://lattes.cnpq.br/3836928174191943Nóbrega, Rossana Oliveira da2021-12-09T19:41:33Z2021-09-102021-12-09T19:41:33Z2021-07-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/21560porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-09T16:33:10Zoai:repositorio.ufpb.br:123456789/21560Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-09T16:33:10Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
title Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
spellingShingle Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
Nóbrega, Rossana Oliveira da
Café
espectroscopia NIR
DD-SIMCA
PLS-DA
iSPA-PLS-DA
Coffee
NIR spectroscopy
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
title_full Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
title_fullStr Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
title_full_unstemmed Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
title_sort Classificação de cafés solúveis usando espectroscopia NIR e quimiometria
author Nóbrega, Rossana Oliveira da
author_facet Nóbrega, Rossana Oliveira da
author_role author
dc.contributor.none.fl_str_mv Araújo, Mário Cesar Ugulino de
http://lattes.cnpq.br/7281739070942782
Fernandes, David Douglas de Sousa
http://lattes.cnpq.br/3836928174191943
dc.contributor.author.fl_str_mv Nóbrega, Rossana Oliveira da
dc.subject.por.fl_str_mv Café
espectroscopia NIR
DD-SIMCA
PLS-DA
iSPA-PLS-DA
Coffee
NIR spectroscopy
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
topic Café
espectroscopia NIR
DD-SIMCA
PLS-DA
iSPA-PLS-DA
Coffee
NIR spectroscopy
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description Soluble coffee is a drink obtained from the dehydration of roasted coffee extract, the quality of which is characterized by its organoleptic properties, which depend on several factors, such as grain variability, caffeine extraction, grinding, roasting process, among others. However, the quality of this product must be monitored to ensure food safety and acceptance by consumers and regulatory bodies. Thus, this work aimed to develop green analytical methodologies based on bench and portable Near Infrared Spectroscopy (NIR: near infrared spectroscopy) and chemometric to assess the conformity of commercial soluble coffees, regarding the type and degree of roast. The first approach of the study is to classify the samples of soluble decaffeinated coffees in relation to regular soluble coffee (with caffeine), using Data-Driven Independent and Flexible Class Analogy Modeling (DD-SIMCA: Data-Driven – Soft Independent Modeling of Class Analogy) on both bench-top and portable NIR equipment. In this approach, the results obtained were 100% sensitivity, specificity, and accuracy. In the second approach, regular soluble coffees were classified with respect to roasting, traditional and extra-strong, using Partial Least Squares Discriminant Analysis (PLSDA) and the Successive Projections Algorithm for selection of intervals in PLS-DA (iSPA-PLS-DA: Successive Projections Algorithm for Interval Selection in Partial Least-Squares). For bench-top NIR spectra, the best result was obtained with the iSPA-PLS-DA method, when using the moving average pre-processing with multiplicative scatter correction (MM+MSC), reaching 96.7% of accuracy rate in the discrimination of samples in their respective classes. In the case of portable NIR, the best sorting performance was observed for iSPA-PLS-DA with moving average preprocessing and baseline offset correction (MM+BO), with 98% accuracy. Therefore, this study showed the potential of NIR spectroscopy together with chemometric classification tools for rapid, non-destructive, and direct analysis of soluble coffee, which can be useful for evaluating quality parameters during the industrial process, as well as the finished product.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09T19:41:33Z
2021-09-10
2021-12-09T19:41:33Z
2021-07-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/21560
url https://repositorio.ufpb.br/jspui/handle/123456789/21560
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Química
Programa de Pós-Graduação em Química
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Química
Programa de Pós-Graduação em Química
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842985888907264