Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/22732 |
Resumo: | Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans. |
id |
UNIFEI_60761fcdd44c60ddbb56185690d3aaf5 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/22732 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modelingIdentificación de la calidad del grano de cacao mediante espectroscopia de infrarrojo cercano y modelización multivarianteIdentificação da qualidade de amêndoas de cacau por espectroscopia de infravermelho próximo e modelagem multivariadaControl de calidadEspectroscopia NIRPLS-DAPLSQuimiometria.Controle de qualidadeEspectroscopia NIRPLS-DAPLSQuimiometria.Quality controlNIR spectroscopyPLS-DAPLSChemometry.Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans.El cacao es un producto básico responsable de los ingresos de millones de personas y de la fabricación de varios productos importantes para las industrias alimentaria, farmacéutica y cosmética. Su calidad está asociada a varios factores que intervienen en las fases de elaboración, principalmente en la fermentación y el secado. La espectroscopia de infrarrojo cercano (NIR) asociada al análisis estadístico multivariante mostró su eficacia en la clasificación y predicción de atributos en los granos de cacao. El objetivo de este estudio fue evaluar la aplicación de los datos espectroscópicos del infrarrojo cercano asociados al análisis multivariante para clasificar los granos de cacao según su calidad y predecir atributos como el pH y la acidez total mediante PLS-DA y PLS, respectivamente. Los valores de pH (4,4-6,7) y de acidez total (6,12-29,9) se determinaron por métodos convencionales. El PLS-DA demostró ser eficaz en la diferenciación de las clases de muestras de cacao con calidad superior e inferior, presentando en la validación un 100% y un 71,43% de clasificación correcta de los granos de cacao con calidad inferior y superior, respectivamente. Los modelos obtenidos por PLS presentaron parámetros satisfactorios, siendo clasificados como de moderada utilidad práctica y excelente capacidad predictiva para el pH y de moderada utilidad práctica y razonable capacidad predictiva para la acidez total. Así, se verificó el potencial de la tecnología NIRS asociada a la quimiometría, que puede utilizarse para clasificar las muestras según su calidad y para predecir los atributos de calidad de los granos de cacao.O cacau é uma commodity responsável pela renda de milhões de pessoas e pela fabricação de diversos produtos importantes para a indústria alimentícia, farmacêutica, cosmética. A sua qualidade está associada a vários fatores envolvidos nas etapas do beneficiamento, principalmente na fermentação e secagem. A espectroscopia no infravermelho próximo (NIR) associada à análise estatística multivariada mostrou eficiência na classificação e predição de atributos em grãos de cacau. O objetivo deste estudo foi avaliar a aplicação de dados espectroscópicos no infravermelho próximo associados à análise multivariada para classificar os grãos de cacau de acordo com sua qualidade e prever atributos como pH e acidez total por PLS-DA e PLS, respectivamente. Os valores de pH (4,4-6,7) e acidez total (6,12-29,9) foram determinados pelos métodos convencionais. O PLS-DA mostrou-se eficaz em diferenciar as classes de amostras de cacau com qualidade superior e inferior, apresentando na validação 100% e 71,43% de classificação correta das amêndoas de cacau com qualidade inferior e qualidade superior, respectivamente. Os modelos obtidos por PLS apresentaram parâmetros satisfatórios, sendo classificados como de utilidade prática moderada e excelente capacidade preditiva para pH e utilidade prática moderada e capacidade preditiva razoável para acidez total. Desta forma, o potencial da tecnologia NIRS associada com a quimiometria foi constatado e pode ser utilizada para classificação das amostras de acordo com a sua qualidade e para predição dos atributos de qualidade das amêndoas de cacau.Research, Society and Development2021-11-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2273210.33448/rsd-v10i15.22732Research, Society and Development; Vol. 10 No. 15; e64101522732Research, Society and Development; Vol. 10 Núm. 15; e64101522732Research, Society and Development; v. 10 n. 15; e641015227322525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/22732/20600Copyright (c) 2021 Acsa Santos Batista; Thinara de Freitas Oliveira; Ivan de Oliveira Pereira; Leandro Soares Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBatista, Acsa SantosOliveira, Thinara de FreitasPereira, Ivan de Oliveira Santos, Leandro Soares2021-12-06T10:13:53Zoai:ojs.pkp.sfu.ca:article/22732Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:41:49.041641Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling Identificación de la calidad del grano de cacao mediante espectroscopia de infrarrojo cercano y modelización multivariante Identificação da qualidade de amêndoas de cacau por espectroscopia de infravermelho próximo e modelagem multivariada |
title |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
spellingShingle |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling Batista, Acsa Santos Control de calidad Espectroscopia NIR PLS-DA PLS Quimiometria. Controle de qualidade Espectroscopia NIR PLS-DA PLS Quimiometria. Quality control NIR spectroscopy PLS-DA PLS Chemometry. |
title_short |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
title_full |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
title_fullStr |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
title_full_unstemmed |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
title_sort |
Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling |
author |
Batista, Acsa Santos |
author_facet |
Batista, Acsa Santos Oliveira, Thinara de Freitas Pereira, Ivan de Oliveira Santos, Leandro Soares |
author_role |
author |
author2 |
Oliveira, Thinara de Freitas Pereira, Ivan de Oliveira Santos, Leandro Soares |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Batista, Acsa Santos Oliveira, Thinara de Freitas Pereira, Ivan de Oliveira Santos, Leandro Soares |
dc.subject.por.fl_str_mv |
Control de calidad Espectroscopia NIR PLS-DA PLS Quimiometria. Controle de qualidade Espectroscopia NIR PLS-DA PLS Quimiometria. Quality control NIR spectroscopy PLS-DA PLS Chemometry. |
topic |
Control de calidad Espectroscopia NIR PLS-DA PLS Quimiometria. Controle de qualidade Espectroscopia NIR PLS-DA PLS Quimiometria. Quality control NIR spectroscopy PLS-DA PLS Chemometry. |
description |
Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/22732 10.33448/rsd-v10i15.22732 |
url |
https://rsdjournal.org/index.php/rsd/article/view/22732 |
identifier_str_mv |
10.33448/rsd-v10i15.22732 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/22732/20600 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 15; e64101522732 Research, Society and Development; Vol. 10 Núm. 15; e64101522732 Research, Society and Development; v. 10 n. 15; e64101522732 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052790560784384 |