Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling

Detalhes bibliográficos
Autor(a) principal: Batista, Acsa Santos
Data de Publicação: 2021
Outros Autores: Oliveira, Thinara de Freitas, Pereira, Ivan de Oliveira, Santos, Leandro Soares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/22732
Resumo: Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans.
id UNIFEI_60761fcdd44c60ddbb56185690d3aaf5
oai_identifier_str oai:ojs.pkp.sfu.ca:article/22732
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Identification of cocoa bean quality by near infrared spectroscopy and multivariate modelingIdentificación de la calidad del grano de cacao mediante espectroscopia de infrarrojo cercano y modelización multivarianteIdentificação da qualidade de amêndoas de cacau por espectroscopia de infravermelho próximo e modelagem multivariadaControl de calidadEspectroscopia NIRPLS-DAPLSQuimiometria.Controle de qualidadeEspectroscopia NIRPLS-DAPLSQuimiometria.Quality controlNIR spectroscopyPLS-DAPLSChemometry.Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans.El cacao es un producto básico responsable de los ingresos de millones de personas y de la fabricación de varios productos importantes para las industrias alimentaria, farmacéutica y cosmética. Su calidad está asociada a varios factores que intervienen en las fases de elaboración, principalmente en la fermentación y el secado. La espectroscopia de infrarrojo cercano (NIR) asociada al análisis estadístico multivariante mostró su eficacia en la clasificación y predicción de atributos en los granos de cacao. El objetivo de este estudio fue evaluar la aplicación de los datos espectroscópicos del infrarrojo cercano asociados al análisis multivariante para clasificar los granos de cacao según su calidad y predecir atributos como el pH y la acidez total mediante PLS-DA y PLS, respectivamente. Los valores de pH (4,4-6,7) y de acidez total (6,12-29,9) se determinaron por métodos convencionales. El PLS-DA demostró ser eficaz en la diferenciación de las clases de muestras de cacao con calidad superior e inferior, presentando en la validación un 100% y un 71,43% de clasificación correcta de los granos de cacao con calidad inferior y superior, respectivamente. Los modelos obtenidos por PLS presentaron parámetros satisfactorios, siendo clasificados como de moderada utilidad práctica y excelente capacidad predictiva para el pH y de moderada utilidad práctica y razonable capacidad predictiva para la acidez total. Así, se verificó el potencial de la tecnología NIRS asociada a la quimiometría, que puede utilizarse para clasificar las muestras según su calidad y para predecir los atributos de calidad de los granos de cacao.O cacau é uma commodity responsável pela renda de milhões de pessoas e pela fabricação de diversos produtos importantes para a indústria alimentícia, farmacêutica, cosmética. A sua qualidade está associada a vários fatores envolvidos nas etapas do beneficiamento, principalmente na fermentação e secagem. A espectroscopia no infravermelho próximo (NIR) associada à análise estatística multivariada mostrou eficiência na classificação e predição de atributos em grãos de cacau. O objetivo deste estudo foi avaliar a aplicação de dados espectroscópicos no infravermelho próximo associados à análise multivariada para classificar os grãos de cacau de acordo com sua qualidade e prever atributos como pH e acidez total por PLS-DA e PLS, respectivamente. Os valores de pH (4,4-6,7) e acidez total (6,12-29,9) foram determinados pelos métodos convencionais. O PLS-DA mostrou-se eficaz em diferenciar as classes de amostras de cacau com qualidade superior e inferior, apresentando na validação 100% e 71,43% de classificação correta das amêndoas de cacau com qualidade inferior e qualidade superior, respectivamente. Os modelos obtidos por PLS apresentaram parâmetros satisfatórios, sendo classificados como de utilidade prática moderada e excelente capacidade preditiva para pH e utilidade prática moderada e capacidade preditiva razoável para acidez total. Desta forma, o potencial da tecnologia NIRS associada com a quimiometria foi constatado e pode ser utilizada para classificação das amostras de acordo com a sua qualidade e para predição dos atributos de qualidade das amêndoas de cacau.Research, Society and Development2021-11-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2273210.33448/rsd-v10i15.22732Research, Society and Development; Vol. 10 No. 15; e64101522732Research, Society and Development; Vol. 10 Núm. 15; e64101522732Research, Society and Development; v. 10 n. 15; e641015227322525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/22732/20600Copyright (c) 2021 Acsa Santos Batista; Thinara de Freitas Oliveira; Ivan de Oliveira Pereira; Leandro Soares Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBatista, Acsa SantosOliveira, Thinara de FreitasPereira, Ivan de Oliveira Santos, Leandro Soares2021-12-06T10:13:53Zoai:ojs.pkp.sfu.ca:article/22732Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:41:49.041641Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
Identificación de la calidad del grano de cacao mediante espectroscopia de infrarrojo cercano y modelización multivariante
Identificação da qualidade de amêndoas de cacau por espectroscopia de infravermelho próximo e modelagem multivariada
title Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
spellingShingle Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
Batista, Acsa Santos
Control de calidad
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Controle de qualidade
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Quality control
NIR spectroscopy
PLS-DA
PLS
Chemometry.
title_short Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
title_full Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
title_fullStr Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
title_full_unstemmed Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
title_sort Identification of cocoa bean quality by near infrared spectroscopy and multivariate modeling
author Batista, Acsa Santos
author_facet Batista, Acsa Santos
Oliveira, Thinara de Freitas
Pereira, Ivan de Oliveira
Santos, Leandro Soares
author_role author
author2 Oliveira, Thinara de Freitas
Pereira, Ivan de Oliveira
Santos, Leandro Soares
author2_role author
author
author
dc.contributor.author.fl_str_mv Batista, Acsa Santos
Oliveira, Thinara de Freitas
Pereira, Ivan de Oliveira
Santos, Leandro Soares
dc.subject.por.fl_str_mv Control de calidad
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Controle de qualidade
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Quality control
NIR spectroscopy
PLS-DA
PLS
Chemometry.
topic Control de calidad
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Controle de qualidade
Espectroscopia NIR
PLS-DA
PLS
Quimiometria.
Quality control
NIR spectroscopy
PLS-DA
PLS
Chemometry.
description Cocoa is a commodity responsible for the income of millions of people and the manufacture of several important products for the food, pharmaceutical, and cosmetic industries. Its quality is associated with several factors involved in the processing steps, mainly in fermentation and drying. The objective of this study was to evaluate the application of near-infrared spectroscopic data associated with multivariate analysis to classify cocoa beans according to their quality and predict attributes such as pH and total acidity by PLS-DA and PLS, respectively. The pH values (4.4-6.7) and total acidity (6.12-29.9) were determined by conventional methods. The PLS-DA proved to be effective in differentiating the classes of cocoa samples with superior and inferior quality, presenting in the validation 100% and 71.43% correct cocoa bean classification with inferior Quality and Higher Quality, respectively. The models obtained by PLS presented satisfactory parameters, being classified as having moderate practical utility and excellent predictive capacity for pH and moderate practical utility and reasonable predictive capacity for total acidity. Thus, the potential of the NIRS technology associated with chemometrics was found and showed efficiency in the classification and prediction of attributes in cocoa beans.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/22732
10.33448/rsd-v10i15.22732
url https://rsdjournal.org/index.php/rsd/article/view/22732
identifier_str_mv 10.33448/rsd-v10i15.22732
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/22732/20600
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 15; e64101522732
Research, Society and Development; Vol. 10 Núm. 15; e64101522732
Research, Society and Development; v. 10 n. 15; e64101522732
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052790560784384