Sylvester forms and Rees algebras

Detalhes bibliográficos
Autor(a) principal: Macêdo, Ricado Burity croccia
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFPB
Texto Completo: https://repositorio.ufpb.br/jspui/handle/tede/8071
Resumo: This work is about the Rees algebra of a nite colength almost complete intersection ideal generated by forms of the same degree in a polynomial ring over a eld. We deal with two situations which are quite apart from each other: in the rst the forms are monomials in an unrestricted number of variables, while the second is for general binary forms. The essential goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{ Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that imply Simis conjecture, along with some solid evidence.
id UFPB_88ae093b318fb38931c167633db495bf
oai_identifier_str oai:repositorio.ufpb.br:tede/8071
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Sylvester forms and Rees algebrasAlgebra de ReesRees algebraNumero de reducãoFormas de SylvesterFuncão de HilbertIdeais iniciaisQuase Cohen-MacaulayMapping coneReduction numberCIENCIAS EXATAS E DA TERRA::MATEMATICAThis work is about the Rees algebra of a nite colength almost complete intersection ideal generated by forms of the same degree in a polynomial ring over a eld. We deal with two situations which are quite apart from each other: in the rst the forms are monomials in an unrestricted number of variables, while the second is for general binary forms. The essential goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{ Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that imply Simis conjecture, along with some solid evidence.Este trabalho versa sobre a algebra de Rees de um ideal quase intersec cão completa, de cocomprimento nito, gerado por formas de mesmo grau em um anel de polinômios sobre um corpo. Considera-se duas situa c~oes inteiramente diversas: na primeira, as formas s~ao mon^omios em um n umero qualquer de vari aveis, enquanto na segunda, s~ao formas bin arias gerais. O objetivo essencial em ambos os casos e obter a profundidade da algebra de Rees. E conhecido que tal algebra e raramente Cohen{Macaulay (isto e, de profundidade m axima). Assim, a quest~ao que permanece e qua o distante são do caso Cohen{Macaulay. No caso de monômios prova-se, mediante certa restri cão, uma conjectura de Vasconcelos no sentido de que a algébra de Rees e quase Cohen {Macaulay. No outro caso extremo, estabelece-se uma prova de uma conjectura de Simis sobre formas bin arias gerais, baseada no trabalho de Huckaba{Marley e em um teorema sobre a ltera cão de Ratli {Rush. Al em disso, apresenta-se um par de conjecturas mais fortes que implicam a conjectura de Simis, juntamente com uma evidência s olida.Universidade Federal da ParaíbaBrasilMatemáticaPrograma de Pós-Graduação em MatemáticaUFPBSimis, Aronhttp://lattes.cnpq.br/8415377033264469Macêdo, Ricado Burity croccia2016-03-31T12:43:01Z2018-07-21T00:27:55Z2018-07-21T00:27:55Z2015-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMACÊDO, Ricardo Burity Croccia. Sylvester forms and Rees algebras, 2015. 99 f. Tese (Doutorado em Matemática) - Universidade Federal da Paraíba, João Pessoa, 2015.https://repositorio.ufpb.br/jspui/handle/tede/8071porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-06T01:43:50Zoai:repositorio.ufpb.br:tede/8071Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2018-09-06T01:43:50Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Sylvester forms and Rees algebras
title Sylvester forms and Rees algebras
spellingShingle Sylvester forms and Rees algebras
Macêdo, Ricado Burity croccia
Algebra de Rees
Rees algebra
Numero de reducão
Formas de Sylvester
Funcão de Hilbert
Ideais iniciais
Quase Cohen-Macaulay
Mapping cone
Reduction number
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Sylvester forms and Rees algebras
title_full Sylvester forms and Rees algebras
title_fullStr Sylvester forms and Rees algebras
title_full_unstemmed Sylvester forms and Rees algebras
title_sort Sylvester forms and Rees algebras
author Macêdo, Ricado Burity croccia
author_facet Macêdo, Ricado Burity croccia
author_role author
dc.contributor.none.fl_str_mv Simis, Aron
http://lattes.cnpq.br/8415377033264469
dc.contributor.author.fl_str_mv Macêdo, Ricado Burity croccia
dc.subject.por.fl_str_mv Algebra de Rees
Rees algebra
Numero de reducão
Formas de Sylvester
Funcão de Hilbert
Ideais iniciais
Quase Cohen-Macaulay
Mapping cone
Reduction number
CIENCIAS EXATAS E DA TERRA::MATEMATICA
topic Algebra de Rees
Rees algebra
Numero de reducão
Formas de Sylvester
Funcão de Hilbert
Ideais iniciais
Quase Cohen-Macaulay
Mapping cone
Reduction number
CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This work is about the Rees algebra of a nite colength almost complete intersection ideal generated by forms of the same degree in a polynomial ring over a eld. We deal with two situations which are quite apart from each other: in the rst the forms are monomials in an unrestricted number of variables, while the second is for general binary forms. The essential goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{ Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that imply Simis conjecture, along with some solid evidence.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-24
2016-03-31T12:43:01Z
2018-07-21T00:27:55Z
2018-07-21T00:27:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MACÊDO, Ricardo Burity Croccia. Sylvester forms and Rees algebras, 2015. 99 f. Tese (Doutorado em Matemática) - Universidade Federal da Paraíba, João Pessoa, 2015.
https://repositorio.ufpb.br/jspui/handle/tede/8071
identifier_str_mv MACÊDO, Ricardo Burity Croccia. Sylvester forms and Rees algebras, 2015. 99 f. Tese (Doutorado em Matemática) - Universidade Federal da Paraíba, João Pessoa, 2015.
url https://repositorio.ufpb.br/jspui/handle/tede/8071
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| diretoria@ufpb.br
_version_ 1801842918740197376