Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFPB |
Texto Completo: | https://repositorio.ufpb.br/jspui/handle/123456789/21200 |
Resumo: | Given the world scenario, where more and more waste is generated by the various sectors of industry and agriculture, special attention has been given to the reuse of these materials, such as corncob and straw and wheat bran. One of the alternatives is the production of products with high added value, such as enzymes, using these residues as substrates. Among the various enzymes, cellulases stand out (CMCases, FPases and -glucosidases), capable of converting part of the lignocellulosic biomass into fermentable sugars, which can be converted into cellulosic or second-generation ethanol. Therefore, this study aimed to produce cellulase enzymes through the filamentous fungus Penicillium sp. FSDE15, to carry out the enzymatic hydrolysis of the pretreated corncob aiming at the release of fermentable sugars for the production of second-generation ethanol. Initially, the pretreatment of the corncob was carried out. Three types of pre-treatment were applied, one acid, one alkaline and one hydrothermal. The conditions applied to each type of pretreatment were established from an experimental factorial design. In the case of chemical pretreatments, a 23 planning was used with three repetitions at the central point, varying the time (10, 40 and 70 min), temperature (40, 70 and 100 ⁰C) and reagent concentration (1, 2 and 3%). The hydrothermal pretreatment was carried out following an experimental factorial design of 22 with three replications in the central point, varying the time and temperature, using the same interval as that applied to the chemical pretreatments. Through fermentation tests (60% moisture, ambient temperature and spore concentration of 106 spores/mL), it was possible to obtain a maximum production of CMCase and FPase of 21.11 U/g and 1.29 U/g, respectively, in 216 h of fermentation, for cultivation carried out with wheat bran and corncob in the proportion of 50%. The -glucosidase activity reached its peak of 8.72 U/g in 216 h for cultivation carried out with pure wheat bran. In the results of enzymatic hydrolysis of corncob pretreated with H2SO4, a concentration of reducing sugars of 23.07 g/L of glucose was reached for hydrolysis with the enzymatic extract of Penicillium sp. FSDE15 and 47.62 g/L for hydrolysis using the commercial enzyme Celluclast®. For the corncob pretreated with NaOH, it was possible to obtain concentrations of 45.55 and 74.12 g/L of glucose for hydrolysis using the enzymatic extract and commercial cellulase, respectively. As for the hydrothermally pretreated corncob, 25.77 g/L of glucose were obtained for hydrolysis with the Penicillium extract and 21.34 g/L for the Celluclast® enzyme. All the best reducing sugar values were reached within 48 h of hydrolysis. These results, together with the study of scale-up for the production of bioethanol, demonstrate that the hydrothermally pretreated corncob, combined with the enzymatic extract produced by Penicillium sp. FSDE15, has great potential for the production of second generation ethanol. |
id |
UFPB_a9ca2a6460aee6497ff54a96ebcda50b |
---|---|
oai_identifier_str |
oai:repositorio.ufpb.br:123456789/21200 |
network_acronym_str |
UFPB |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository_id_str |
|
spelling |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milhoBiomassa lignocelulósicaFungo filamentosoEnzimasPré-tratamentoHidróliseLignocellulosic biomassFilamentous fungusEnzymesPretreatmentHydrolysisCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAGiven the world scenario, where more and more waste is generated by the various sectors of industry and agriculture, special attention has been given to the reuse of these materials, such as corncob and straw and wheat bran. One of the alternatives is the production of products with high added value, such as enzymes, using these residues as substrates. Among the various enzymes, cellulases stand out (CMCases, FPases and -glucosidases), capable of converting part of the lignocellulosic biomass into fermentable sugars, which can be converted into cellulosic or second-generation ethanol. Therefore, this study aimed to produce cellulase enzymes through the filamentous fungus Penicillium sp. FSDE15, to carry out the enzymatic hydrolysis of the pretreated corncob aiming at the release of fermentable sugars for the production of second-generation ethanol. Initially, the pretreatment of the corncob was carried out. Three types of pre-treatment were applied, one acid, one alkaline and one hydrothermal. The conditions applied to each type of pretreatment were established from an experimental factorial design. In the case of chemical pretreatments, a 23 planning was used with three repetitions at the central point, varying the time (10, 40 and 70 min), temperature (40, 70 and 100 ⁰C) and reagent concentration (1, 2 and 3%). The hydrothermal pretreatment was carried out following an experimental factorial design of 22 with three replications in the central point, varying the time and temperature, using the same interval as that applied to the chemical pretreatments. Through fermentation tests (60% moisture, ambient temperature and spore concentration of 106 spores/mL), it was possible to obtain a maximum production of CMCase and FPase of 21.11 U/g and 1.29 U/g, respectively, in 216 h of fermentation, for cultivation carried out with wheat bran and corncob in the proportion of 50%. The -glucosidase activity reached its peak of 8.72 U/g in 216 h for cultivation carried out with pure wheat bran. In the results of enzymatic hydrolysis of corncob pretreated with H2SO4, a concentration of reducing sugars of 23.07 g/L of glucose was reached for hydrolysis with the enzymatic extract of Penicillium sp. FSDE15 and 47.62 g/L for hydrolysis using the commercial enzyme Celluclast®. For the corncob pretreated with NaOH, it was possible to obtain concentrations of 45.55 and 74.12 g/L of glucose for hydrolysis using the enzymatic extract and commercial cellulase, respectively. As for the hydrothermally pretreated corncob, 25.77 g/L of glucose were obtained for hydrolysis with the Penicillium extract and 21.34 g/L for the Celluclast® enzyme. All the best reducing sugar values were reached within 48 h of hydrolysis. These results, together with the study of scale-up for the production of bioethanol, demonstrate that the hydrothermally pretreated corncob, combined with the enzymatic extract produced by Penicillium sp. FSDE15, has great potential for the production of second generation ethanol.NenhumaDiante do cenário mundial, onde cada vez mais resíduos são gerados pelos diversos setores da indústria e da agricultura, uma atenção especial vem sendo dada ao reaproveitamento desses materiais, como sabugo e palha de milho e farelo de trigo. Uma das alternativas é a produção de produtos de alto valor agregado, como enzimas, a partir da utilização desses resíduos como substratos. Entre as diversas enzimas, destacam-se as celulases (CMCases, FPases e -glicosidases), capazes de converter parte da biomassa lignocelulósica em açúcares fermentescíveis, esses podem ser convertidos em etanol celulósico ou de segunda geração. Diante disso, este estudo teve como objetivo a produção de enzimas celulases, por meio do fungo filamentoso Penicillium sp. FSDE15, para realização da hidrólise enzimática do sabugo de milho pré-tratado visando a liberação de açúcares fermentescíveis para produção de etanol de segunda geração. Inicialmente foi realizado o pré-tratamento do sabugo de milho. Três tipos de pré-tratamento foram aplicados, sendo um ácido, um alcalino e um hidrotérmico. As condições aplicadas a cada tipo de pré-tratamento foram estabelecidas a partir de um planejamento fatorial experimental. No caso dos pré-tratamentos químicos, empregou-se um planejamento 23 com três repetições no ponto central, variando-se o tempo (10, 40 e 70 min), temperatura (40, 70 e 100 ⁰C) e concentração de reagente (1, 2 e 3%). O pré-tratamento hidrotérmico foi realizado seguindo um planejamento fatorial experimental de 22 com três repetições no ponto central, variando-se o tempo e a temperatura, sendo empregado o mesmo intervalo que o aplicado aos pré-tratamentos químicos. Por meio dos ensaios fermentativos (60% de umidade, temperatura ambiente e concentração de esporos de 106 esporos/mL), foi possível obter uma máxima produção de CMCase e FPase de 21,11 U/g e 1,29 U/g, respectivamente, em 216 h de fermentação, para cultivo realizado com farelo de trigo e sabugo de milho na proporção de 50%. A atividade -glicosidase atingiu seu pico de 8,72 U/g em 216 h para cultivo realizado com farelo de trigo puro. Nos resultados de hidrólise enzimática do sabugo pré-tratado com H2SO4, atingiu-se uma concentração de açúcares redutores (AR) de 23,07 g/L de glicose para a hidrólise com o extrato enzimático de Penicillium sp. FSDE15 e 47,62 g/L para a hidrólise utilizando a enzima comercial Celluclast®. Para o sabugo pré-tratado com NaOH, foi possível obter concentrações de 45,55 e 74,12 g/L de glicose, para as hidrólises utilizando o extrato enzimático e a celulase comercial, respectivamente. Já para o sabugo pré-tratado hidrotermicamente, obteve-se 25,77 g/L de glicose para a hidrólise com o extrato de Penicillium e 21,34 g/L para a enzima Celluclast®. Todos os melhores valores de açúcares redutores foram atingidos em 48 h de hidrólise. Esses resultados, juntamente com o estudo do aumento de escala para a produção de bioetanol, demonstram que o sabugo pré-tratado hidrotermicamente, aliado com o extrato enzimático produzido por Penicillium sp. FSDE15, possui grande potencial para a produção de etanol de segunda geração.Universidade Federal da ParaíbaBrasilEngenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUFPBSantos, Sharline Florentino de Melohttp://lattes.cnpq.br/4846443214585734Gonçalves, Laís Campos Teixeira de Carvalhohttp://lattes.cnpq.br/3411642497113875Santos, Felipe Augusto2021-10-13T13:43:45Z2021-06-152021-10-13T13:43:45Z2021-05-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/21200porhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-09T17:34:03Zoai:repositorio.ufpb.br:123456789/21200Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| diretoria@ufpb.bropendoar:2022-08-09T17:34:03Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
dc.title.none.fl_str_mv |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
title |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
spellingShingle |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho Santos, Felipe Augusto Biomassa lignocelulósica Fungo filamentoso Enzimas Pré-tratamento Hidrólise Lignocellulosic biomass Filamentous fungus Enzymes Pretreatment Hydrolysis CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
title_full |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
title_fullStr |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
title_full_unstemmed |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
title_sort |
Produção de celulases por Penicillium sp. FSDE15 e hidrólise enzimática do sabugo de milho |
author |
Santos, Felipe Augusto |
author_facet |
Santos, Felipe Augusto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Sharline Florentino de Melo http://lattes.cnpq.br/4846443214585734 Gonçalves, Laís Campos Teixeira de Carvalho http://lattes.cnpq.br/3411642497113875 |
dc.contributor.author.fl_str_mv |
Santos, Felipe Augusto |
dc.subject.por.fl_str_mv |
Biomassa lignocelulósica Fungo filamentoso Enzimas Pré-tratamento Hidrólise Lignocellulosic biomass Filamentous fungus Enzymes Pretreatment Hydrolysis CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
topic |
Biomassa lignocelulósica Fungo filamentoso Enzimas Pré-tratamento Hidrólise Lignocellulosic biomass Filamentous fungus Enzymes Pretreatment Hydrolysis CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Given the world scenario, where more and more waste is generated by the various sectors of industry and agriculture, special attention has been given to the reuse of these materials, such as corncob and straw and wheat bran. One of the alternatives is the production of products with high added value, such as enzymes, using these residues as substrates. Among the various enzymes, cellulases stand out (CMCases, FPases and -glucosidases), capable of converting part of the lignocellulosic biomass into fermentable sugars, which can be converted into cellulosic or second-generation ethanol. Therefore, this study aimed to produce cellulase enzymes through the filamentous fungus Penicillium sp. FSDE15, to carry out the enzymatic hydrolysis of the pretreated corncob aiming at the release of fermentable sugars for the production of second-generation ethanol. Initially, the pretreatment of the corncob was carried out. Three types of pre-treatment were applied, one acid, one alkaline and one hydrothermal. The conditions applied to each type of pretreatment were established from an experimental factorial design. In the case of chemical pretreatments, a 23 planning was used with three repetitions at the central point, varying the time (10, 40 and 70 min), temperature (40, 70 and 100 ⁰C) and reagent concentration (1, 2 and 3%). The hydrothermal pretreatment was carried out following an experimental factorial design of 22 with three replications in the central point, varying the time and temperature, using the same interval as that applied to the chemical pretreatments. Through fermentation tests (60% moisture, ambient temperature and spore concentration of 106 spores/mL), it was possible to obtain a maximum production of CMCase and FPase of 21.11 U/g and 1.29 U/g, respectively, in 216 h of fermentation, for cultivation carried out with wheat bran and corncob in the proportion of 50%. The -glucosidase activity reached its peak of 8.72 U/g in 216 h for cultivation carried out with pure wheat bran. In the results of enzymatic hydrolysis of corncob pretreated with H2SO4, a concentration of reducing sugars of 23.07 g/L of glucose was reached for hydrolysis with the enzymatic extract of Penicillium sp. FSDE15 and 47.62 g/L for hydrolysis using the commercial enzyme Celluclast®. For the corncob pretreated with NaOH, it was possible to obtain concentrations of 45.55 and 74.12 g/L of glucose for hydrolysis using the enzymatic extract and commercial cellulase, respectively. As for the hydrothermally pretreated corncob, 25.77 g/L of glucose were obtained for hydrolysis with the Penicillium extract and 21.34 g/L for the Celluclast® enzyme. All the best reducing sugar values were reached within 48 h of hydrolysis. These results, together with the study of scale-up for the production of bioethanol, demonstrate that the hydrothermally pretreated corncob, combined with the enzymatic extract produced by Penicillium sp. FSDE15, has great potential for the production of second generation ethanol. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-13T13:43:45Z 2021-06-15 2021-10-13T13:43:45Z 2021-05-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/21200 |
url |
https://repositorio.ufpb.br/jspui/handle/123456789/21200 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Química Programa de Pós-Graduação em Engenharia Química UFPB |
publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Química Programa de Pós-Graduação em Engenharia Química UFPB |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
instname_str |
Universidade Federal da Paraíba (UFPB) |
instacron_str |
UFPB |
institution |
UFPB |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
repository.mail.fl_str_mv |
diretoria@ufpb.br|| diretoria@ufpb.br |
_version_ |
1801842983269564416 |