Clustering Application for Customer Segmentation in the JUSTA Database
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/2458 |
Resumo: | Financial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics. |
id |
UFPE-2_131e32f138238f214c1da3d49121b324 |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/2458 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
Clustering Application for Customer Segmentation in the JUSTA DatabaseAplicação de Clustering para Segmentação de Clientes na Base de Dados da JUSTAFinancial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics.Empresas de tecnologia financeira, mais conhecidas como fintechs, são companhias de inovação tecnológica com potencial transformador para o setor financial. Nelas, o tratamento personalizado requer a análise de quantidades expressivas de dados. Dessa forma, utilizar técnicas de mineração de dados pode oferecer maior facilidade em classificar e visualizar os consumidores. A empresa analisada nesse artigo, a Justa, é uma fintech que promove produtos e serviços através de uma conta digital, e que procurava aprimorar a classificação dos seus clientes. A partir das bases de dados anonimizadas, fornecida pela Justa, cada cliente foi representado por features consideradas importantes para a empresa. Para chegar na base final, foi feita a integração, redução, limpeza, e transformação dos dados. Os algoritmos testados para agrupar os clientes foram K-Means, fuzzy C-Means e K-Medoids, onde o K-medoids, aplicado com a distância de Gower, apresentou melhor resultado na delineação dos perfis. Os resultados indicaram que há perfis diferentes de clientes, mas que estes são pouco acentuados e estão concentrados em apenas algumas das características comportamentais.Escola Politécnica de Pernambuco2022-11-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/245810.25286/repa.v7i3.2458Journal of Engineering and Applied Research; Vol 7 No 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53Revista de Engenharia e Pesquisa Aplicada; v. 7 n. 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-532525-425110.25286/repa.v7i3reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2458/846http://revistas.poli.br/index.php/repa/article/view/2458/847Copyright (c) 2022 Ester Deschamps de Macêdo, Vinícius Ferreira Silva, Allana Lais dos Santos Rocha, Letícia Castro Portela de Oliveirahttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessRocha, Allana Lais dos Santosde Macêdo, Ester Deschampsde Oliveira, Letícia Castro PortelaSilva, Vinícius Ferreira2022-11-30T23:03:18Zoai:ojs.poli.br:article/2458Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2022-11-30T23:03:18Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Clustering Application for Customer Segmentation in the JUSTA Database Aplicação de Clustering para Segmentação de Clientes na Base de Dados da JUSTA |
title |
Clustering Application for Customer Segmentation in the JUSTA Database |
spellingShingle |
Clustering Application for Customer Segmentation in the JUSTA Database Rocha, Allana Lais dos Santos |
title_short |
Clustering Application for Customer Segmentation in the JUSTA Database |
title_full |
Clustering Application for Customer Segmentation in the JUSTA Database |
title_fullStr |
Clustering Application for Customer Segmentation in the JUSTA Database |
title_full_unstemmed |
Clustering Application for Customer Segmentation in the JUSTA Database |
title_sort |
Clustering Application for Customer Segmentation in the JUSTA Database |
author |
Rocha, Allana Lais dos Santos |
author_facet |
Rocha, Allana Lais dos Santos de Macêdo, Ester Deschamps de Oliveira, Letícia Castro Portela Silva, Vinícius Ferreira |
author_role |
author |
author2 |
de Macêdo, Ester Deschamps de Oliveira, Letícia Castro Portela Silva, Vinícius Ferreira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rocha, Allana Lais dos Santos de Macêdo, Ester Deschamps de Oliveira, Letícia Castro Portela Silva, Vinícius Ferreira |
description |
Financial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2458 10.25286/repa.v7i3.2458 |
url |
http://revistas.poli.br/index.php/repa/article/view/2458 |
identifier_str_mv |
10.25286/repa.v7i3.2458 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2458/846 http://revistas.poli.br/index.php/repa/article/view/2458/847 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 7 No 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53 Revista de Engenharia e Pesquisa Aplicada; v. 7 n. 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53 2525-4251 10.25286/repa.v7i3 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798036000479379456 |