Clustering Application for Customer Segmentation in the JUSTA Database

Detalhes bibliográficos
Autor(a) principal: Rocha, Allana Lais dos Santos
Data de Publicação: 2022
Outros Autores: de Macêdo, Ester Deschamps, de Oliveira, Letícia Castro Portela, Silva, Vinícius Ferreira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/2458
Resumo: Financial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics.
id UFPE-2_131e32f138238f214c1da3d49121b324
oai_identifier_str oai:ojs.poli.br:article/2458
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling Clustering Application for Customer Segmentation in the JUSTA DatabaseAplicação de Clustering para Segmentação de Clientes na Base de Dados da JUSTAFinancial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics.Empresas de tecnologia financeira, mais conhecidas como fintechs, são companhias de inovação tecnológica com potencial transformador para o setor financial. Nelas, o tratamento personalizado requer a análise de quantidades expressivas de dados. Dessa forma, utilizar técnicas de mineração de dados pode oferecer maior facilidade em classificar e visualizar os consumidores. A empresa analisada nesse artigo, a Justa, é uma fintech que promove produtos e serviços através de uma conta digital, e que procurava aprimorar a classificação dos seus clientes. A partir das bases de dados anonimizadas, fornecida pela Justa, cada cliente foi representado por features consideradas importantes para a empresa. Para chegar na base final, foi feita a integração, redução, limpeza, e transformação dos dados. Os algoritmos testados para agrupar os clientes foram K-Means, fuzzy C-Means e K-Medoids, onde o K-medoids, aplicado com a distância de Gower, apresentou melhor resultado na delineação dos perfis. Os resultados indicaram que há perfis diferentes de clientes, mas que estes são pouco acentuados e estão concentrados em apenas algumas das características comportamentais.Escola Politécnica de Pernambuco2022-11-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/245810.25286/repa.v7i3.2458Journal of Engineering and Applied Research; Vol 7 No 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53Revista de Engenharia e Pesquisa Aplicada; v. 7 n. 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-532525-425110.25286/repa.v7i3reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2458/846http://revistas.poli.br/index.php/repa/article/view/2458/847Copyright (c) 2022 Ester Deschamps de Macêdo, Vinícius Ferreira Silva, Allana Lais dos Santos Rocha, Letícia Castro Portela de Oliveirahttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessRocha, Allana Lais dos Santosde Macêdo, Ester Deschampsde Oliveira, Letícia Castro PortelaSilva, Vinícius Ferreira2022-11-30T23:03:18Zoai:ojs.poli.br:article/2458Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2022-11-30T23:03:18Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Clustering Application for Customer Segmentation in the JUSTA Database
Aplicação de Clustering para Segmentação de Clientes na Base de Dados da JUSTA
title Clustering Application for Customer Segmentation in the JUSTA Database
spellingShingle Clustering Application for Customer Segmentation in the JUSTA Database
Rocha, Allana Lais dos Santos
title_short Clustering Application for Customer Segmentation in the JUSTA Database
title_full Clustering Application for Customer Segmentation in the JUSTA Database
title_fullStr Clustering Application for Customer Segmentation in the JUSTA Database
title_full_unstemmed Clustering Application for Customer Segmentation in the JUSTA Database
title_sort Clustering Application for Customer Segmentation in the JUSTA Database
author Rocha, Allana Lais dos Santos
author_facet Rocha, Allana Lais dos Santos
de Macêdo, Ester Deschamps
de Oliveira, Letícia Castro Portela
Silva, Vinícius Ferreira
author_role author
author2 de Macêdo, Ester Deschamps
de Oliveira, Letícia Castro Portela
Silva, Vinícius Ferreira
author2_role author
author
author
dc.contributor.author.fl_str_mv Rocha, Allana Lais dos Santos
de Macêdo, Ester Deschamps
de Oliveira, Letícia Castro Portela
Silva, Vinícius Ferreira
description Financial technology companies, also known as fintechs, are innovative technology companies with the potential to transform the financial sector. For them to apply a personalised treatment of clients, extensive data analysis is required. Therefore, employing data mining techniques can offer advantages in classifying and visualising costumers. Justa, the company explored in this work, is a fintech that provides products and services through digital bank accounts, and it sought to improve its understanding of its client base. Using anonymised datasets provided by Justa, each client was represented by features they considered relevant. To arrive at the final dataset, the integration, reduction, cleansing, and transformation of the original data was performed. The algorithms tested for grouping customers were K-Means, fuzzy C-Means and K-Medoids, where K-medoids presented better results in the delineation of the profiles. The results indicated that there are different profiles of clients, but that these are barely perceptible and are concentrated in a few behavioral characteristics.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2458
10.25286/repa.v7i3.2458
url http://revistas.poli.br/index.php/repa/article/view/2458
identifier_str_mv 10.25286/repa.v7i3.2458
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2458/846
http://revistas.poli.br/index.php/repa/article/view/2458/847
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 7 No 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53
Revista de Engenharia e Pesquisa Aplicada; v. 7 n. 3 (2022): Edição Especial em Ciência de Dados e Analytics; 39-53
2525-4251
10.25286/repa.v7i3
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798036000479379456