A System for Predicting Accident Risk on Highways of Pernambuco
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/1328 |
Resumo: | Traffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study. |
id |
UFPE-2_3e44ca3108b2234c75597683d80d265c |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/1328 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
A System for Predicting Accident Risk on Highways of PernambucoUm Sistema para Predição de Risco de Acidentes em Rodovias de PernambucoTraffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study.As estatísticas dos acidentes de trânsito são uma preocupação mundial e trazem grandes prejuízos à sociedade,tanto econômicos quanto sentimentais. Modelos de aprendizado de máquina aplicados à predição de acidentes temo potencial de servir como ferramenta no auxílio de decisão e melhorar a precisão e o impacto de medidas para aredução de acidentes. Este trabalho tem como proposta desenvolver um sistema visual e interativo de predição deacidentes com o objetivo de auxiliar o processo de decisão de agentes rodoviários federais em Pernambuco. Osistema é composto por um modelo de aprendizagem de máquina treinado com dados de ocorrências de acidentesdisponibilizados pela Polícia Rodoviária Federal e uma ferramenta interativa de visualização dos pontos com maioresriscos no mapa de Pernambuco. Foram aplicados modelos de regressão para a predição do número de acidentesdado a identificação da rodovia, altura do trecho, ano, mês, dia da semana e condições meteorológicas. O modeloRandom Forest apresentou os melhores resultados de acordo com as métricas de avaliação consideradas notrabalho.Escola Politécnica de Pernambuco2020-04-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/132810.25286/repa.v5i2.1328Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 18-26Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 18-262525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1328/607http://revistas.poli.br/index.php/repa/article/view/1328/608Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSousa, Rodrigo da SilvaAraújo, Danilode Azevedo, Victor Mendonça2021-07-13T08:41:03Zoai:ojs.poli.br:article/1328Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:41:03Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
A System for Predicting Accident Risk on Highways of Pernambuco Um Sistema para Predição de Risco de Acidentes em Rodovias de Pernambuco |
title |
A System for Predicting Accident Risk on Highways of Pernambuco |
spellingShingle |
A System for Predicting Accident Risk on Highways of Pernambuco Sousa, Rodrigo da Silva |
title_short |
A System for Predicting Accident Risk on Highways of Pernambuco |
title_full |
A System for Predicting Accident Risk on Highways of Pernambuco |
title_fullStr |
A System for Predicting Accident Risk on Highways of Pernambuco |
title_full_unstemmed |
A System for Predicting Accident Risk on Highways of Pernambuco |
title_sort |
A System for Predicting Accident Risk on Highways of Pernambuco |
author |
Sousa, Rodrigo da Silva |
author_facet |
Sousa, Rodrigo da Silva Araújo, Danilo de Azevedo, Victor Mendonça |
author_role |
author |
author2 |
Araújo, Danilo de Azevedo, Victor Mendonça |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sousa, Rodrigo da Silva Araújo, Danilo de Azevedo, Victor Mendonça |
description |
Traffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1328 10.25286/repa.v5i2.1328 |
url |
http://revistas.poli.br/index.php/repa/article/view/1328 |
identifier_str_mv |
10.25286/repa.v5i2.1328 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1328/607 http://revistas.poli.br/index.php/repa/article/view/1328/608 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújo http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújo http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 18-26 Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 18-26 2525-4251 10.25286/repa.v5i2 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798035999846039552 |