A System for Predicting Accident Risk on Highways of Pernambuco

Detalhes bibliográficos
Autor(a) principal: Sousa, Rodrigo da Silva
Data de Publicação: 2020
Outros Autores: Araújo, Danilo, de Azevedo, Victor Mendonça
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/1328
Resumo: Traffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study.
id UFPE-2_3e44ca3108b2234c75597683d80d265c
oai_identifier_str oai:ojs.poli.br:article/1328
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling A System for Predicting Accident Risk on Highways of PernambucoUm Sistema para Predição de Risco de Acidentes em Rodovias de PernambucoTraffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study.As estatísticas dos acidentes de trânsito são uma preocupação mundial e trazem grandes prejuízos à sociedade,tanto econômicos quanto sentimentais. Modelos de aprendizado de máquina aplicados à predição de acidentes temo potencial de servir como ferramenta no auxílio de decisão e melhorar a precisão e o impacto de medidas para aredução de acidentes. Este trabalho tem como proposta desenvolver um sistema visual e interativo de predição deacidentes com o objetivo de auxiliar o processo de decisão de agentes rodoviários federais em Pernambuco. Osistema é composto por um modelo de aprendizagem de máquina treinado com dados de ocorrências de acidentesdisponibilizados pela Polícia Rodoviária Federal e uma ferramenta interativa de visualização dos pontos com maioresriscos no mapa de Pernambuco. Foram aplicados modelos de regressão para a predição do número de acidentesdado a identificação da rodovia, altura do trecho, ano, mês, dia da semana e condições meteorológicas. O modeloRandom Forest apresentou os melhores resultados de acordo com as métricas de avaliação consideradas notrabalho.Escola Politécnica de Pernambuco2020-04-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/132810.25286/repa.v5i2.1328Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 18-26Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 18-262525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1328/607http://revistas.poli.br/index.php/repa/article/view/1328/608Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSousa, Rodrigo da SilvaAraújo, Danilode Azevedo, Victor Mendonça2021-07-13T08:41:03Zoai:ojs.poli.br:article/1328Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:41:03Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A System for Predicting Accident Risk on Highways of Pernambuco
Um Sistema para Predição de Risco de Acidentes em Rodovias de Pernambuco
title A System for Predicting Accident Risk on Highways of Pernambuco
spellingShingle A System for Predicting Accident Risk on Highways of Pernambuco
Sousa, Rodrigo da Silva
title_short A System for Predicting Accident Risk on Highways of Pernambuco
title_full A System for Predicting Accident Risk on Highways of Pernambuco
title_fullStr A System for Predicting Accident Risk on Highways of Pernambuco
title_full_unstemmed A System for Predicting Accident Risk on Highways of Pernambuco
title_sort A System for Predicting Accident Risk on Highways of Pernambuco
author Sousa, Rodrigo da Silva
author_facet Sousa, Rodrigo da Silva
Araújo, Danilo
de Azevedo, Victor Mendonça
author_role author
author2 Araújo, Danilo
de Azevedo, Victor Mendonça
author2_role author
author
dc.contributor.author.fl_str_mv Sousa, Rodrigo da Silva
Araújo, Danilo
de Azevedo, Victor Mendonça
description Traffic accident statistics are a worldwide concern and bring great damage to society, both economic andsentimental. Machine learning models applied to accident prediction have the potential to serve as a tool in decisionmaking and to improve the accuracy and impact of accident reduction measures. This paper aims to develop avisual and interactive accident prediction system to help the decision-making process of federal road agents inPernambuco. The system consists of a machine learning model trained with accident data provided by Brazil'sFederal Highway Police and an interactive tool for viewing the riskiest points on the map of Pernambuco. Regressionmodels were applied to predict the number of accidents given the identification of the highway, section, year,month, day of the week and weather conditions. The Random Forest model presented the best results accordingto the evaluation metrics considered in the study.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1328
10.25286/repa.v5i2.1328
url http://revistas.poli.br/index.php/repa/article/view/1328
identifier_str_mv 10.25286/repa.v5i2.1328
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1328/607
http://revistas.poli.br/index.php/repa/article/view/1328/608
dc.rights.driver.fl_str_mv Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújo
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Rodrigo da Silva Sousa, Danilo Araújo
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 18-26
Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 18-26
2525-4251
10.25286/repa.v5i2
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798035999846039552