Machine Learning Models to Identify Anomalies in the Production of Flat Glass

Detalhes bibliográficos
Autor(a) principal: da Silva Lima, Pedro Gabriel
Data de Publicação: 2023
Outros Autores: Maciel, Alexandre Magno Andrade, Resnick, Noam Eyal, Terceiro Neto, Aristóteles, Leite, Dênis
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/2770
Resumo: This work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs.
id UFPE-2_9d86366f7e44ca2a4dbf2334f5e62ca9
oai_identifier_str oai:ojs.poli.br:article/2770
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling Machine Learning Models to Identify Anomalies in the Production of Flat GlassThis work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs.Este trabalho apresenta uma proposta inovadora para a previsão de defeitos em processos industriais de refino de vidro. Embora seja um processo complexo com vários pontos que podem causar defeitos, a abordagem atual dos especialistas é apenas reativa, ou seja, eles só podem agir após o dano ter sido causado. Este estudo propõe o uso de dados coletados dos processos industriais de uma empresa real como um estudo de caso para criar modelos de previsão, a fim de identificar uma possível falha antes que ela ocorra. O objetivo é usar o SPC Charter como um modelo de entrega e permitir que os especialistas tomem medidas corretivas preventivas, evitando danos e reduzindo os custos de produção.Escola Politécnica de Pernambuco2023-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/277010.25286/repa.v9i1.2770Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-272525-425110.25286/repa.v9i1reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2770/893http://revistas.poli.br/index.php/repa/article/view/2770/894Copyright (c) 2024 Pedro Gabriel da Silva Lima, Alexandre Magno Andrade Maciel, Noam Eyal Resnick, Aristóteles Terceiro Neto, Dênis Leitehttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessda Silva Lima, Pedro GabrielMaciel, Alexandre Magno AndradeResnick, Noam EyalTerceiro Neto, AristótelesLeite, Dênis2023-12-30T10:15:41Zoai:ojs.poli.br:article/2770Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2023-12-30T10:15:41Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Machine Learning Models to Identify Anomalies in the Production of Flat Glass
title Machine Learning Models to Identify Anomalies in the Production of Flat Glass
spellingShingle Machine Learning Models to Identify Anomalies in the Production of Flat Glass
da Silva Lima, Pedro Gabriel
title_short Machine Learning Models to Identify Anomalies in the Production of Flat Glass
title_full Machine Learning Models to Identify Anomalies in the Production of Flat Glass
title_fullStr Machine Learning Models to Identify Anomalies in the Production of Flat Glass
title_full_unstemmed Machine Learning Models to Identify Anomalies in the Production of Flat Glass
title_sort Machine Learning Models to Identify Anomalies in the Production of Flat Glass
author da Silva Lima, Pedro Gabriel
author_facet da Silva Lima, Pedro Gabriel
Maciel, Alexandre Magno Andrade
Resnick, Noam Eyal
Terceiro Neto, Aristóteles
Leite, Dênis
author_role author
author2 Maciel, Alexandre Magno Andrade
Resnick, Noam Eyal
Terceiro Neto, Aristóteles
Leite, Dênis
author2_role author
author
author
author
dc.contributor.author.fl_str_mv da Silva Lima, Pedro Gabriel
Maciel, Alexandre Magno Andrade
Resnick, Noam Eyal
Terceiro Neto, Aristóteles
Leite, Dênis
description This work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2770
10.25286/repa.v9i1.2770
url http://revistas.poli.br/index.php/repa/article/view/2770
identifier_str_mv 10.25286/repa.v9i1.2770
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/2770/893
http://revistas.poli.br/index.php/repa/article/view/2770/894
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27
Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27
2525-4251
10.25286/repa.v9i1
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798036000518176768