Machine Learning Models to Identify Anomalies in the Production of Flat Glass
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/2770 |
Resumo: | This work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs. |
id |
UFPE-2_9d86366f7e44ca2a4dbf2334f5e62ca9 |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/2770 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
Machine Learning Models to Identify Anomalies in the Production of Flat GlassThis work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs.Este trabalho apresenta uma proposta inovadora para a previsão de defeitos em processos industriais de refino de vidro. Embora seja um processo complexo com vários pontos que podem causar defeitos, a abordagem atual dos especialistas é apenas reativa, ou seja, eles só podem agir após o dano ter sido causado. Este estudo propõe o uso de dados coletados dos processos industriais de uma empresa real como um estudo de caso para criar modelos de previsão, a fim de identificar uma possível falha antes que ela ocorra. O objetivo é usar o SPC Charter como um modelo de entrega e permitir que os especialistas tomem medidas corretivas preventivas, evitando danos e reduzindo os custos de produção.Escola Politécnica de Pernambuco2023-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/277010.25286/repa.v9i1.2770Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-272525-425110.25286/repa.v9i1reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/2770/893http://revistas.poli.br/index.php/repa/article/view/2770/894Copyright (c) 2024 Pedro Gabriel da Silva Lima, Alexandre Magno Andrade Maciel, Noam Eyal Resnick, Aristóteles Terceiro Neto, Dênis Leitehttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessda Silva Lima, Pedro GabrielMaciel, Alexandre Magno AndradeResnick, Noam EyalTerceiro Neto, AristótelesLeite, Dênis2023-12-30T10:15:41Zoai:ojs.poli.br:article/2770Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2023-12-30T10:15:41Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
title |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
spellingShingle |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass da Silva Lima, Pedro Gabriel |
title_short |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
title_full |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
title_fullStr |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
title_full_unstemmed |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
title_sort |
Machine Learning Models to Identify Anomalies in the Production of Flat Glass |
author |
da Silva Lima, Pedro Gabriel |
author_facet |
da Silva Lima, Pedro Gabriel Maciel, Alexandre Magno Andrade Resnick, Noam Eyal Terceiro Neto, Aristóteles Leite, Dênis |
author_role |
author |
author2 |
Maciel, Alexandre Magno Andrade Resnick, Noam Eyal Terceiro Neto, Aristóteles Leite, Dênis |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
da Silva Lima, Pedro Gabriel Maciel, Alexandre Magno Andrade Resnick, Noam Eyal Terceiro Neto, Aristóteles Leite, Dênis |
description |
This work presents an innovative proposal for the prediction of defects in industrial glass refining processes. Although it is a complex process with several points that can cause defects, the current approach of specialists is only reactive, that is, they can only act after the damage has been caused. This study proposes the use of data collected from the industrial processes of a real company as a case study to create prediction models, in order to identify a possible failure before it occurs. The objective is to use multiple linear regression as a model and allow specialists to take preventive corrective measures, avoiding damage and reducing production costs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2770 10.25286/repa.v9i1.2770 |
url |
http://revistas.poli.br/index.php/repa/article/view/2770 |
identifier_str_mv |
10.25286/repa.v9i1.2770 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/2770/893 http://revistas.poli.br/index.php/repa/article/view/2770/894 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 9 No 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27 Revista de Engenharia e Pesquisa Aplicada; v. 9 n. 1 (2024): Edição Especial em Ciência de Dados e Analytics; 19-27 2525-4251 10.25286/repa.v9i1 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798036000518176768 |