Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price

Detalhes bibliográficos
Autor(a) principal: Morais, Ana Sofia Rosa
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/41429
Resumo: Since 2019, Bitcoin has become one of the most popular assets in the world. However, this decentralised cryptocurrency is typically characterised by high volatility and, in that sense, creates some concerns mainly to regulatory authorities and other decision-makers, such as governments and legislators. Furthermore, there are multiple approaches and results in the literature regarding the most relevant determinants to predict the Bitcoin price, the complexity of the Machine Learning (ML) model used to predict the Bitcoin price, and the trade-off between interpretability and the model’s performance. As a starting point, the simple model called Generalized Least Squares with Autocorrelation covariance structure (GLSAR) was found to be unrealistic to predict something as complex as the Bitcoin price. Alternatively, two more complex black box models were tested: a Long Short Term Memory neural network (LSTM) and a simple Deep Neural Network (DNN). LSTM achieved the highest 2 score of 81.63% with DNN obtaining a 2 score of 81.27%. Explainability techniques were applied on DNN and the results indicate that 71% of the twenty-one most significant variables are transaction-based, although future analysis can be done for occasional events. Moreover, the three most important features are the S&P500, the Bitcoin price in the previous day and how difficult it is to mine a Bitcoin block.
id RCAP_a5e6d2b12853d282fca348c0a05d3b8d
oai_identifier_str oai:repositorio.ucp.pt:10400.14/41429
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin priceBitcoinDeterminantsLSTMGLSARDNNComplexityPerformanceInterpretabilityAIDecision-makingDeterminantesComplexidadeDesempenhoInterpretaçãoIATomada de decisãoDomínio/Área Científica::Ciências Sociais::Economia e GestãoSince 2019, Bitcoin has become one of the most popular assets in the world. However, this decentralised cryptocurrency is typically characterised by high volatility and, in that sense, creates some concerns mainly to regulatory authorities and other decision-makers, such as governments and legislators. Furthermore, there are multiple approaches and results in the literature regarding the most relevant determinants to predict the Bitcoin price, the complexity of the Machine Learning (ML) model used to predict the Bitcoin price, and the trade-off between interpretability and the model’s performance. As a starting point, the simple model called Generalized Least Squares with Autocorrelation covariance structure (GLSAR) was found to be unrealistic to predict something as complex as the Bitcoin price. Alternatively, two more complex black box models were tested: a Long Short Term Memory neural network (LSTM) and a simple Deep Neural Network (DNN). LSTM achieved the highest 2 score of 81.63% with DNN obtaining a 2 score of 81.27%. Explainability techniques were applied on DNN and the results indicate that 71% of the twenty-one most significant variables are transaction-based, although future analysis can be done for occasional events. Moreover, the three most important features are the S&P500, the Bitcoin price in the previous day and how difficult it is to mine a Bitcoin block.Desde 2019 que o Bitcoin se tornou um dos ativos mais conhecidos no mundo. Esta criptomoeda descentralizada é tipicamente caracterizada pela elevada volatilidade e, nesse sentido, provoca algumas preocupações, sobretudo às entidades reguladoras e a outros decisores, como governos e legisladores. Além disso, há múltiplas abordagens e resultados na literatura relativamente aos fatores mais relevantes para prever o preço do Bitcoin; à complexidade do modelo de Machine Learning (ML) usado; e ao trade-off entre o nível de interpretação e o desempenho do modelo. Como ponto de partida, o modelo simples designado de Generalized Least Squares with Autocorrelation covariance structure (GLS) revelou-se irrealista para prever algo complexo como o preço do Bitcoin. Alternativamente, dois modelos black box foram testados: uma rede neural Long Short Term Memory (LSTM) e uma simples Deep Neural Network (DNN). O LSTM atingiu o melhor 2 score de 81,63% e o DNN obteve um 2 score de 81,27% Técnicas de explicabilidade foram aplicadas no DNN e os resultados indicaram que 71% das vinte e uma variáveis mais importantes são relacionadas com as transações, embora possam ser feitas futuras análises para acontecimentos pontuais. Moreover, the three most important features are the S&P500, the Bitcoin price in the previous day and how difficult it is to mine a Bitcoin block. Além disso, as três variáveis mais significativas são S&P500, o preço do Bitcoin no dia anterior e a dificuldade em extrair Bitcoins e hash rate.Guedes, AnaVeritati - Repositório Institucional da Universidade Católica PortuguesaMorais, Ana Sofia Rosa2023-12-31T01:30:39Z2023-01-272022-122023-01-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41429TID:203253000enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-02T01:36:05Zoai:repositorio.ucp.pt:10400.14/41429Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:34:07.406152Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
title Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
spellingShingle Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
Morais, Ana Sofia Rosa
Bitcoin
Determinants
LSTM
GLSAR
DNN
Complexity
Performance
Interpretability
AI
Decision-making
Determinantes
Complexidade
Desempenho
Interpretação
IA
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
title_full Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
title_fullStr Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
title_full_unstemmed Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
title_sort Application of explainable AI in Machine Learning models to identify the main determinants of Bitcoin price
author Morais, Ana Sofia Rosa
author_facet Morais, Ana Sofia Rosa
author_role author
dc.contributor.none.fl_str_mv Guedes, Ana
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Morais, Ana Sofia Rosa
dc.subject.por.fl_str_mv Bitcoin
Determinants
LSTM
GLSAR
DNN
Complexity
Performance
Interpretability
AI
Decision-making
Determinantes
Complexidade
Desempenho
Interpretação
IA
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Bitcoin
Determinants
LSTM
GLSAR
DNN
Complexity
Performance
Interpretability
AI
Decision-making
Determinantes
Complexidade
Desempenho
Interpretação
IA
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Since 2019, Bitcoin has become one of the most popular assets in the world. However, this decentralised cryptocurrency is typically characterised by high volatility and, in that sense, creates some concerns mainly to regulatory authorities and other decision-makers, such as governments and legislators. Furthermore, there are multiple approaches and results in the literature regarding the most relevant determinants to predict the Bitcoin price, the complexity of the Machine Learning (ML) model used to predict the Bitcoin price, and the trade-off between interpretability and the model’s performance. As a starting point, the simple model called Generalized Least Squares with Autocorrelation covariance structure (GLSAR) was found to be unrealistic to predict something as complex as the Bitcoin price. Alternatively, two more complex black box models were tested: a Long Short Term Memory neural network (LSTM) and a simple Deep Neural Network (DNN). LSTM achieved the highest 2 score of 81.63% with DNN obtaining a 2 score of 81.27%. Explainability techniques were applied on DNN and the results indicate that 71% of the twenty-one most significant variables are transaction-based, although future analysis can be done for occasional events. Moreover, the three most important features are the S&P500, the Bitcoin price in the previous day and how difficult it is to mine a Bitcoin block.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2023-12-31T01:30:39Z
2023-01-27
2023-01-27T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/41429
TID:203253000
url http://hdl.handle.net/10400.14/41429
identifier_str_mv TID:203253000
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132067605250048