Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/1679 |
Resumo: | The significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions. |
id |
UFPE-2_a794c5c58d2c4dcc2669d2b645ec9320 |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/1679 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
Data Mining for Analysis and Prediction of Traffic Violations in the City of RecifeMineração de Dados para Análise e Predição das Infrações de Trânsito na Cidade do RecifeThe significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions.O aumento significativo de infrações de trânsito tem se tornado algo casual na vida dos brasileiros. A cidade do Recife, estado de Pernambuco, segundo a empresa Holandesa TomTom Traffic, no ano de 2018, ocupava a 10º posição entre as cidades com o pior tráfego de automóveis no mundo. Em 2019 passou a ocupar a 15º posição. Diante disto, esta pesquisa tem como intuito investigar fatores relacionados ao aumento da quantidade de equipamentos de aferição automática e de agentes de trânsito. O objetivo é criar um modelo de predição de delitos no trânsito por turnos, testado com a base real referente ao ano de 2019. Já os dados selecionados para visualização e treinamento das técnicas de Machine Learning foram referentes aos anos de 2017 e 2018, extraídos do portal de dados abertos. Para guiar o processo de mineração e análise de dados, a metodologia CRISP-DM foi aplicada. Além disso, ferramentas como Pentaho PDI, Weka, GretL, Python e Orange Data Mining também foram utilizadas para auxiliar neste processo. Os resultados obtidos apontam que há um aumento significativo de infrações em feriados, principalmente no Corpus Christi. Além disso, as predições mensais apresentam bons resultados quando comparados aos números reais de infrações.Escola Politécnica de Pernambuco2021-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/167910.25286/repa.v6i3.1679Journal of Engineering and Applied Research; Vol 6 No 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11Revista de Engenharia e Pesquisa Aplicada; v. 6 n. 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-112525-425110.25286/repa.v6i3reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1679/726http://revistas.poli.br/index.php/repa/article/view/1679/727Copyright (c) 2021 Arianne Sarmento Torcate, Maicon Herverton Lino Ferreira da Silva Barros, Flávio Secco Fonseca, Marcos André Santos Galindohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessTorcate, Arianne SarmentoBarros, Maicon Herverton Lino Ferreira da SilvaFonseca, Flávio SeccoGalindo, Marcos André Santos2021-07-13T08:40:31Zoai:ojs.poli.br:article/1679Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:40:31Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife Mineração de Dados para Análise e Predição das Infrações de Trânsito na Cidade do Recife |
title |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
spellingShingle |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife Torcate, Arianne Sarmento |
title_short |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
title_full |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
title_fullStr |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
title_full_unstemmed |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
title_sort |
Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife |
author |
Torcate, Arianne Sarmento |
author_facet |
Torcate, Arianne Sarmento Barros, Maicon Herverton Lino Ferreira da Silva Fonseca, Flávio Secco Galindo, Marcos André Santos |
author_role |
author |
author2 |
Barros, Maicon Herverton Lino Ferreira da Silva Fonseca, Flávio Secco Galindo, Marcos André Santos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Torcate, Arianne Sarmento Barros, Maicon Herverton Lino Ferreira da Silva Fonseca, Flávio Secco Galindo, Marcos André Santos |
description |
The significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1679 10.25286/repa.v6i3.1679 |
url |
http://revistas.poli.br/index.php/repa/article/view/1679 |
identifier_str_mv |
10.25286/repa.v6i3.1679 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1679/726 http://revistas.poli.br/index.php/repa/article/view/1679/727 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 6 No 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11 Revista de Engenharia e Pesquisa Aplicada; v. 6 n. 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11 2525-4251 10.25286/repa.v6i3 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798036000354598912 |