Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife

Detalhes bibliográficos
Autor(a) principal: Torcate, Arianne Sarmento
Data de Publicação: 2021
Outros Autores: Barros, Maicon Herverton Lino Ferreira da Silva, Fonseca, Flávio Secco, Galindo, Marcos André Santos
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/1679
Resumo: The significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions.
id UFPE-2_a794c5c58d2c4dcc2669d2b645ec9320
oai_identifier_str oai:ojs.poli.br:article/1679
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling Data Mining for Analysis and Prediction of Traffic Violations in the City of RecifeMineração de Dados para Análise e Predição das Infrações de Trânsito na Cidade do RecifeThe significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions.O aumento significativo de infrações de trânsito tem se tornado algo casual na vida dos brasileiros. A cidade do Recife, estado de Pernambuco, segundo a empresa Holandesa TomTom Traffic, no ano de 2018, ocupava a 10º posição entre as cidades com o pior tráfego de automóveis no mundo. Em 2019 passou a ocupar a 15º posição. Diante disto, esta pesquisa tem como intuito investigar fatores relacionados ao aumento da quantidade de equipamentos de aferição automática e de agentes de trânsito. O objetivo é criar um modelo de predição de delitos no trânsito por turnos, testado com a base real referente ao ano de 2019. Já os dados selecionados para visualização e treinamento das técnicas de Machine Learning foram referentes aos anos de 2017 e 2018, extraídos do portal de dados abertos. Para guiar o processo de mineração e análise de dados, a metodologia CRISP-DM foi aplicada. Além disso, ferramentas como Pentaho PDI, Weka, GretL, Python e Orange Data Mining também foram utilizadas para auxiliar neste processo. Os resultados obtidos apontam que há um aumento significativo de infrações em feriados, principalmente no Corpus Christi. Além disso, as predições mensais apresentam bons resultados quando comparados aos números reais de infrações.Escola Politécnica de Pernambuco2021-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/167910.25286/repa.v6i3.1679Journal of Engineering and Applied Research; Vol 6 No 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11Revista de Engenharia e Pesquisa Aplicada; v. 6 n. 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-112525-425110.25286/repa.v6i3reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1679/726http://revistas.poli.br/index.php/repa/article/view/1679/727Copyright (c) 2021 Arianne Sarmento Torcate, Maicon Herverton Lino Ferreira da Silva Barros, Flávio Secco Fonseca, Marcos André Santos Galindohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessTorcate, Arianne SarmentoBarros, Maicon Herverton Lino Ferreira da SilvaFonseca, Flávio SeccoGalindo, Marcos André Santos2021-07-13T08:40:31Zoai:ojs.poli.br:article/1679Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:40:31Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
Mineração de Dados para Análise e Predição das Infrações de Trânsito na Cidade do Recife
title Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
spellingShingle Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
Torcate, Arianne Sarmento
title_short Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
title_full Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
title_fullStr Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
title_full_unstemmed Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
title_sort Data Mining for Analysis and Prediction of Traffic Violations in the City of Recife
author Torcate, Arianne Sarmento
author_facet Torcate, Arianne Sarmento
Barros, Maicon Herverton Lino Ferreira da Silva
Fonseca, Flávio Secco
Galindo, Marcos André Santos
author_role author
author2 Barros, Maicon Herverton Lino Ferreira da Silva
Fonseca, Flávio Secco
Galindo, Marcos André Santos
author2_role author
author
author
dc.contributor.author.fl_str_mv Torcate, Arianne Sarmento
Barros, Maicon Herverton Lino Ferreira da Silva
Fonseca, Flávio Secco
Galindo, Marcos André Santos
description The significant increase in traffic violations has become somewhat casual in the lives of Brazilians. The city of Recife, state of Pernambuco, according to the Dutch company TomTom Traffic, in 2018, ranked 10th among the cities with the worst car traffic in the world. In 2019 it ranked 15th. Given this, this research aims to investigate factors related to the increase in the amount of automatic measurement equipment and traffic agents. The objective is to create a model of prediction of violations in traffic by turns, tested with the real basis for the year 2019. Whereas the data selected for visualization and training of Machine Learning techniques were for the years 2017 and 2018, extracted from the open data portal. To guide the mining and data analysis process, the CRISP-DM methodology was applied. In addition, tools such as Pentaho PDI, Weka, GretL, Python and Orange Data Mining were also used to assist in this process. The results obtained indicate that there is a significant increase in infractions on holidays, mainly in Corpus Christi. In addition, monthly predictions show good results when compared to the actual numbers of infractions.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1679
10.25286/repa.v6i3.1679
url http://revistas.poli.br/index.php/repa/article/view/1679
identifier_str_mv 10.25286/repa.v6i3.1679
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1679/726
http://revistas.poli.br/index.php/repa/article/view/1679/727
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 6 No 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11
Revista de Engenharia e Pesquisa Aplicada; v. 6 n. 3 (2021): Edição Especial em Ciência de Dados e Analytics; 1-11
2525-4251
10.25286/repa.v6i3
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798036000354598912