Machine Learning Tool for Fault Prediction in Electric Grid Transformers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/1351 |
Resumo: | This work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process. |
id |
UFPE-2_cbd19d8afc3b235453d4cf761f5027de |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/1351 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
Machine Learning Tool for Fault Prediction in Electric Grid TransformersFerramenta de Aprendizado de Máquina para Previsão de Falha de Transformadores de Rede ElétricaThis work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process.Este trabalho tem como objetivo o desenvolvimento de uma ferramenta de previsão de falhas detransformadores de rede elétrica para suporte da equipe técnica de manutenção preventiva. Comesse propósito, é feito o tratamento de uma base de registros de falha, conversão dos dados para oformato de uma série histórica mensal de falhas por transformador, cálculo de novos atributos apartir das informações da base, seguido pela estimação do risco de falha no mês seguinte de cadatransformador da rede e pelo ranqueamento dos transformadores com base nesse risco. A estimaçãode risco é feita baseando na metodologia Aprendendo a Ranquear (Learning To Rank - LTR), pontoa-ponto, na qual os itens de uma lista são ranqueados com base numa métrica calculada a partir dealgoritmos de classificação ou regressão. É demonstrado um ganho significativo no desempenho dopreditor devido ao processo de engenharia de atributos.Escola Politécnica de Pernambuco2020-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/135110.25286/repa.v5i2.1351Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 44-50Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 44-502525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1351/613http://revistas.poli.br/index.php/repa/article/view/1351/614Copyright (c) 2020 Leonardo Fagundes Luz Serranohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessFagundes Luz Serrano, Leonardode Azevêdo, Victor MendonçaCarneiro Lins, Anthony José da Cunha2021-07-13T08:41:01Zoai:ojs.poli.br:article/1351Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:41:01Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers Ferramenta de Aprendizado de Máquina para Previsão de Falha de Transformadores de Rede Elétrica |
title |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
spellingShingle |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers Fagundes Luz Serrano, Leonardo |
title_short |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
title_full |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
title_fullStr |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
title_full_unstemmed |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
title_sort |
Machine Learning Tool for Fault Prediction in Electric Grid Transformers |
author |
Fagundes Luz Serrano, Leonardo |
author_facet |
Fagundes Luz Serrano, Leonardo de Azevêdo, Victor Mendonça Carneiro Lins, Anthony José da Cunha |
author_role |
author |
author2 |
de Azevêdo, Victor Mendonça Carneiro Lins, Anthony José da Cunha |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fagundes Luz Serrano, Leonardo de Azevêdo, Victor Mendonça Carneiro Lins, Anthony José da Cunha |
description |
This work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1351 10.25286/repa.v5i2.1351 |
url |
http://revistas.poli.br/index.php/repa/article/view/1351 |
identifier_str_mv |
10.25286/repa.v5i2.1351 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1351/613 http://revistas.poli.br/index.php/repa/article/view/1351/614 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Leonardo Fagundes Luz Serrano http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Leonardo Fagundes Luz Serrano http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 44-50 Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 44-50 2525-4251 10.25286/repa.v5i2 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798035999853379584 |