Machine Learning Tool for Fault Prediction in Electric Grid Transformers

Detalhes bibliográficos
Autor(a) principal: Fagundes Luz Serrano, Leonardo
Data de Publicação: 2020
Outros Autores: de Azevêdo, Victor Mendonça, Carneiro Lins, Anthony José da Cunha
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/1351
Resumo: This work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process.
id UFPE-2_cbd19d8afc3b235453d4cf761f5027de
oai_identifier_str oai:ojs.poli.br:article/1351
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling Machine Learning Tool for Fault Prediction in Electric Grid TransformersFerramenta de Aprendizado de Máquina para Previsão de Falha de Transformadores de Rede ElétricaThis work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process.Este trabalho tem como objetivo o desenvolvimento de uma ferramenta de previsão de falhas detransformadores de rede elétrica para suporte da equipe técnica de manutenção preventiva. Comesse propósito, é feito o tratamento de uma base de registros de falha, conversão dos dados para oformato de uma série histórica mensal de falhas por transformador, cálculo de novos atributos apartir das informações da base, seguido pela estimação do risco de falha no mês seguinte de cadatransformador da rede e pelo ranqueamento dos transformadores com base nesse risco. A estimaçãode risco é feita baseando na metodologia Aprendendo a Ranquear (Learning To Rank - LTR), pontoa-ponto, na qual os itens de uma lista são ranqueados com base numa métrica calculada a partir dealgoritmos de classificação ou regressão. É demonstrado um ganho significativo no desempenho dopreditor devido ao processo de engenharia de atributos.Escola Politécnica de Pernambuco2020-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/135110.25286/repa.v5i2.1351Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 44-50Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 44-502525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1351/613http://revistas.poli.br/index.php/repa/article/view/1351/614Copyright (c) 2020 Leonardo Fagundes Luz Serranohttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessFagundes Luz Serrano, Leonardode Azevêdo, Victor MendonçaCarneiro Lins, Anthony José da Cunha2021-07-13T08:41:01Zoai:ojs.poli.br:article/1351Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:41:01Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Machine Learning Tool for Fault Prediction in Electric Grid Transformers
Ferramenta de Aprendizado de Máquina para Previsão de Falha de Transformadores de Rede Elétrica
title Machine Learning Tool for Fault Prediction in Electric Grid Transformers
spellingShingle Machine Learning Tool for Fault Prediction in Electric Grid Transformers
Fagundes Luz Serrano, Leonardo
title_short Machine Learning Tool for Fault Prediction in Electric Grid Transformers
title_full Machine Learning Tool for Fault Prediction in Electric Grid Transformers
title_fullStr Machine Learning Tool for Fault Prediction in Electric Grid Transformers
title_full_unstemmed Machine Learning Tool for Fault Prediction in Electric Grid Transformers
title_sort Machine Learning Tool for Fault Prediction in Electric Grid Transformers
author Fagundes Luz Serrano, Leonardo
author_facet Fagundes Luz Serrano, Leonardo
de Azevêdo, Victor Mendonça
Carneiro Lins, Anthony José da Cunha
author_role author
author2 de Azevêdo, Victor Mendonça
Carneiro Lins, Anthony José da Cunha
author2_role author
author
dc.contributor.author.fl_str_mv Fagundes Luz Serrano, Leonardo
de Azevêdo, Victor Mendonça
Carneiro Lins, Anthony José da Cunha
description This work aims for the development of a tool for forecasting faults within the transformers connectedto the electric grid in order to support the maintenance team. With this purpose, the fault databaseis treated and converted to a list of monthly time series, one for each transformer, new features arecalculated based on the information on the database, followed by the fault risk estimation for thenext month in the series for each transformer and the ranking of the transformers. The riskestimation is done using the Pointwise Learning to Rank (LTR) methodology, in which the items on alist are ranked based on metric calculated using classifiers or regressors. A significant gain inperformance is demonstrated due to the feature engineering process.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1351
10.25286/repa.v5i2.1351
url http://revistas.poli.br/index.php/repa/article/view/1351
identifier_str_mv 10.25286/repa.v5i2.1351
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1351/613
http://revistas.poli.br/index.php/repa/article/view/1351/614
dc.rights.driver.fl_str_mv Copyright (c) 2020 Leonardo Fagundes Luz Serrano
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Leonardo Fagundes Luz Serrano
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 44-50
Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 44-50
2525-4251
10.25286/repa.v5i2
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798035999853379584