Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia e Pesquisa Aplicada |
Texto Completo: | http://revistas.poli.br/index.php/repa/article/view/1354 |
Resumo: | According to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept. |
id |
UFPE-2_e66816a71a4ceb1dc36c8f9223dbafad |
---|---|
oai_identifier_str |
oai:ojs.poli.br:article/1354 |
network_acronym_str |
UFPE-2 |
network_name_str |
Revista de Engenharia e Pesquisa Aplicada |
repository_id_str |
|
spelling |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reportsChronic Illness Diagnosis Helper: Proposta de Uma Ferramenta para Auxílio Ao Diagnóstico de Doenças Crônicas Através da Análise Histórica de Relatos SintomáticosAccording to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept.Segundo dados da Organização Mundial da saúde (OMS), as doenças crônicas não transmissíveis (DCNT) são responsáveis por cerca de 71% dos óbitos em todo o mundo. Desse modo, ao longo dos anos algumas medidas vêm sendo tomadas para tentar reduzir esse índice. No que diz respeito ao uso de tecnologias nesse processo, existem algumas iniciativas no contexto do Aprendizado de Máquina (AM) que tentam encontrar formas que vão desde o auxílio ao diagnóstico até o suporte em determinados tipos de tratamentos. Visando isso, esse projeto tem como intuito apresentar uma ferramenta, baseada em um modelo de aprendizado de máquina, para auxiliar profissionais da saúde no diagnóstico das DCNT usando dados sintomáticos derivados da base “Chronic illness” da plataforma Kaggle. Como melhor resultado desse processo, foi escolhido um modelo de aprendizado baseado em técnicas de ensemble, onde a melhor precisão obtida chegou a ≈ 71,63 % para um número de 20 patologias, sendo esse modelo usado como base para a aplicação Chronic Illness Diagnosis Helper (CIDH), desenvolvida para uma prova de conceito inicial.Escola Politécnica de Pernambuco2020-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/135410.25286/repa.v5i2.1354Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 51-61Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 51-612525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1354/615http://revistas.poli.br/index.php/repa/article/view/1354/617Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Linshttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessBastos, Michael LopesLins, Anthony José da Cunha Carneiro2021-07-13T08:40:58Zoai:ojs.poli.br:article/1354Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:40:58Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false |
dc.title.none.fl_str_mv |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports Chronic Illness Diagnosis Helper: Proposta de Uma Ferramenta para Auxílio Ao Diagnóstico de Doenças Crônicas Através da Análise Histórica de Relatos Sintomáticos |
title |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
spellingShingle |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports Bastos, Michael Lopes |
title_short |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
title_full |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
title_fullStr |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
title_full_unstemmed |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
title_sort |
Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports |
author |
Bastos, Michael Lopes |
author_facet |
Bastos, Michael Lopes Lins, Anthony José da Cunha Carneiro |
author_role |
author |
author2 |
Lins, Anthony José da Cunha Carneiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bastos, Michael Lopes Lins, Anthony José da Cunha Carneiro |
description |
According to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1354 10.25286/repa.v5i2.1354 |
url |
http://revistas.poli.br/index.php/repa/article/view/1354 |
identifier_str_mv |
10.25286/repa.v5i2.1354 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://revistas.poli.br/index.php/repa/article/view/1354/615 http://revistas.poli.br/index.php/repa/article/view/1354/617 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Lins http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Lins http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
publisher.none.fl_str_mv |
Escola Politécnica de Pernambuco |
dc.source.none.fl_str_mv |
Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 51-61 Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 51-61 2525-4251 10.25286/repa.v5i2 reponame:Revista de Engenharia e Pesquisa Aplicada instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Revista de Engenharia e Pesquisa Aplicada |
collection |
Revista de Engenharia e Pesquisa Aplicada |
repository.name.fl_str_mv |
Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
||repa@poli.br |
_version_ |
1798035999855476736 |