Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports

Detalhes bibliográficos
Autor(a) principal: Bastos, Michael Lopes
Data de Publicação: 2020
Outros Autores: Lins, Anthony José da Cunha Carneiro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia e Pesquisa Aplicada
Texto Completo: http://revistas.poli.br/index.php/repa/article/view/1354
Resumo: According to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept.
id UFPE-2_e66816a71a4ceb1dc36c8f9223dbafad
oai_identifier_str oai:ojs.poli.br:article/1354
network_acronym_str UFPE-2
network_name_str Revista de Engenharia e Pesquisa Aplicada
repository_id_str
spelling Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reportsChronic Illness Diagnosis Helper: Proposta de Uma Ferramenta para Auxílio Ao Diagnóstico de Doenças Crônicas Através da Análise Histórica de Relatos SintomáticosAccording to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept.Segundo dados da Organização Mundial da saúde (OMS), as doenças crônicas não transmissíveis (DCNT) são responsáveis por cerca de 71% dos óbitos em todo o mundo. Desse modo, ao longo dos anos algumas medidas vêm sendo tomadas para tentar reduzir esse índice. No que diz respeito ao uso de tecnologias nesse processo, existem algumas iniciativas no contexto do Aprendizado de Máquina (AM) que tentam encontrar formas que vão desde o auxílio ao diagnóstico até o suporte em determinados tipos de tratamentos. Visando isso, esse projeto tem como intuito apresentar uma ferramenta, baseada em um modelo de aprendizado de máquina, para auxiliar profissionais da saúde no diagnóstico das DCNT usando dados sintomáticos derivados da base “Chronic illness” da plataforma Kaggle. Como melhor resultado desse processo, foi escolhido um modelo de aprendizado baseado em técnicas de ensemble, onde a melhor precisão obtida chegou a ≈ 71,63 % para um número de 20 patologias, sendo esse modelo usado como base para a aplicação Chronic Illness Diagnosis Helper (CIDH), desenvolvida para uma prova de conceito inicial.Escola Politécnica de Pernambuco2020-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdftext/htmlhttp://revistas.poli.br/index.php/repa/article/view/135410.25286/repa.v5i2.1354Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 51-61Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 51-612525-425110.25286/repa.v5i2reponame:Revista de Engenharia e Pesquisa Aplicadainstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttp://revistas.poli.br/index.php/repa/article/view/1354/615http://revistas.poli.br/index.php/repa/article/view/1354/617Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Linshttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessBastos, Michael LopesLins, Anthony José da Cunha Carneiro2021-07-13T08:40:58Zoai:ojs.poli.br:article/1354Revistahttp://revistas.poli.br/index.php/repaONGhttp://revistas.poli.br/index.php/repa/oai||repa@poli.br2525-42512525-4251opendoar:2021-07-13T08:40:58Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
Chronic Illness Diagnosis Helper: Proposta de Uma Ferramenta para Auxílio Ao Diagnóstico de Doenças Crônicas Através da Análise Histórica de Relatos Sintomáticos
title Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
spellingShingle Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
Bastos, Michael Lopes
title_short Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
title_full Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
title_fullStr Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
title_full_unstemmed Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
title_sort Chronic Illness Diagnosis Helper: proposal of a tool to aid the diagnosis of chronic diseases through the historical analysis of symptomatic reports
author Bastos, Michael Lopes
author_facet Bastos, Michael Lopes
Lins, Anthony José da Cunha Carneiro
author_role author
author2 Lins, Anthony José da Cunha Carneiro
author2_role author
dc.contributor.author.fl_str_mv Bastos, Michael Lopes
Lins, Anthony José da Cunha Carneiro
description According to data from the World Health Organization (WHO), the noncommunicable chronic diseases (NCD) are responsible for around 71% of deaths in all world. Thus, over the years some methods have been taken to try to reduce this index. Concerning to use of Technologies in this process, there are some initiatives in the context of Machine Learning (ML) that trying to find ways from diagnosis aid to support in certain types of treatments. Thus, this project has a goal to show a tool based on a machine learning model to health professionals to diagnosis NCD using symptomatic data derivates from base “Chronic illness” from the Kaggle platform. As the best result from this process, was choose a learning model based an ensemble technics, when the best accurate arrived at ≈ 71,63 % for some 20 pathologies, being this model used as bases to the application Chronic Illness Diagnosis Helper (CIDH), developed with an initial Prove of Concept.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1354
10.25286/repa.v5i2.1354
url http://revistas.poli.br/index.php/repa/article/view/1354
identifier_str_mv 10.25286/repa.v5i2.1354
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://revistas.poli.br/index.php/repa/article/view/1354/615
http://revistas.poli.br/index.php/repa/article/view/1354/617
dc.rights.driver.fl_str_mv Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Lins
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Michael Lopes Bastos, Anthony José da Cunha Carneiro Lins
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escola Politécnica de Pernambuco
publisher.none.fl_str_mv Escola Politécnica de Pernambuco
dc.source.none.fl_str_mv Journal of Engineering and Applied Research; Vol 5 No 2 (2020): Edição Especial em Inteligência Artificial; 51-61
Revista de Engenharia e Pesquisa Aplicada; v. 5 n. 2 (2020): Edição Especial em Inteligência Artificial; 51-61
2525-4251
10.25286/repa.v5i2
reponame:Revista de Engenharia e Pesquisa Aplicada
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Revista de Engenharia e Pesquisa Aplicada
collection Revista de Engenharia e Pesquisa Aplicada
repository.name.fl_str_mv Revista de Engenharia e Pesquisa Aplicada - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv ||repa@poli.br
_version_ 1798035999855476736