New Extended Lifetime Distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000t9vx |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/12240 |
Resumo: | Este trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais. |
id |
UFPE_0139b2a9606387b182f6c24870ca9e0f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/12240 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PAIXÃO, Ana Carla Percontini daSANTOS, Josenildo dosCORDEIRO, Gauss Moutinho2015-03-12T18:21:26Z2015-03-12T18:21:26Z2014-01-31PAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014..https://repositorio.ufpe.br/handle/123456789/12240ark:/64986/001300000t9vxEste trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDistribuição betaDistribuição Poisson generalizadaDistribuição binomial negativaDistribuição Weibull PoissonDistribuição ZetaEntropiaMáxima verossimilhançaNew Extended Lifetime Distributionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Ana Carla Percontini da Paixão.pdf.jpgTESE Ana Carla Percontini da Paixão.pdf.jpgGenerated Thumbnailimage/jpeg1187https://repositorio.ufpe.br/bitstream/123456789/12240/5/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf.jpgd4b22d9a944ddd902dc9d138e96c85c8MD55ORIGINALTESE Ana Carla Percontini da Paixão.pdfTESE Ana Carla Percontini da Paixão.pdfapplication/pdf2309750https://repositorio.ufpe.br/bitstream/123456789/12240/1/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf1f4caced5454dee673c1e41705168ad0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12240/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12240/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Ana Carla Percontini da Paixão.pdf.txtTESE Ana Carla Percontini da Paixão.pdf.txtExtracted texttext/plain186747https://repositorio.ufpe.br/bitstream/123456789/12240/4/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf.txtf23e527f5192b8e0d5bc586f4815b137MD54123456789/122402019-10-25 04:56:21.308oai:repositorio.ufpe.br:123456789/12240TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:56:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
New Extended Lifetime Distributions |
title |
New Extended Lifetime Distributions |
spellingShingle |
New Extended Lifetime Distributions PAIXÃO, Ana Carla Percontini da Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
title_short |
New Extended Lifetime Distributions |
title_full |
New Extended Lifetime Distributions |
title_fullStr |
New Extended Lifetime Distributions |
title_full_unstemmed |
New Extended Lifetime Distributions |
title_sort |
New Extended Lifetime Distributions |
author |
PAIXÃO, Ana Carla Percontini da |
author_facet |
PAIXÃO, Ana Carla Percontini da |
author_role |
author |
dc.contributor.author.fl_str_mv |
PAIXÃO, Ana Carla Percontini da |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Josenildo dos |
dc.contributor.advisor-co1.fl_str_mv |
CORDEIRO, Gauss Moutinho |
contributor_str_mv |
SANTOS, Josenildo dos CORDEIRO, Gauss Moutinho |
dc.subject.por.fl_str_mv |
Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
topic |
Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
description |
Este trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-01-31 |
dc.date.accessioned.fl_str_mv |
2015-03-12T18:21:26Z |
dc.date.available.fl_str_mv |
2015-03-12T18:21:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014.. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/12240 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000t9vx |
identifier_str_mv |
PAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014.. ark:/64986/001300000t9vx |
url |
https://repositorio.ufpe.br/handle/123456789/12240 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/12240/5/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/12240/1/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf https://repositorio.ufpe.br/bitstream/123456789/12240/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/12240/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/12240/4/TESE%20Ana%20Carla%20Percontini%20da%20Paix%c3%a3o.pdf.txt |
bitstream.checksum.fl_str_mv |
d4b22d9a944ddd902dc9d138e96c85c8 1f4caced5454dee673c1e41705168ad0 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 f23e527f5192b8e0d5bc586f4815b137 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172913641291776 |