A combinatorial study of soundness and normalization in n-graphs

Detalhes bibliográficos
Autor(a) principal: ANDRADE, Laís Sousa de
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000059vf
Texto Completo: https://repositorio.ufpe.br/handle/123456789/18618
Resumo: N-Graphs is a multiple conclusion natural deduction with proofs as directed graphs, motivated by the idea of proofs as geometric objects and aimed towards the study of the geometry of Natural Deduction systems. Following that line of research, this work revisits the system under a purely combinatorial perspective, determining geometrical conditions on the graphs of proofs to explain its soundness criterion and proof growth during normalization. Applying recent developments in the fields of proof graphs, proof-nets and N-Graphs itself, we propose a linear time algorithm for proof verification of the full system, a result that can be related to proof-nets solutions from Murawski (2000) and Guerrini (2011), and a normalization procedure based on the notion of sub-N-Graphs, introduced by Carvalho, in 2014. We first present a new soundness criterion for meta-edges, along with the extension of Carvalho’s sequentization proof for the full system. For this criterion we define an algorithm for proof verification that uses a DFS-like search to find invalid cycles in a proof-graph. Since the soundness criterion in proof graphs is analogous to the proof-nets procedure, the algorithm can also be extended to check proofs in the multiplicative linear logic without units (MLL−) with linear time complexity. The new normalization proposed here combines a modified version of Alves’ (2009) original beta and permutative reductions with an adaptation of Carbone’s duplication operation on sub-N-Graphs. The procedure is simpler than the original one and works as an extension of both the normalization defined by Prawitz and the combinatorial study developed by Carbone, i.e. normal proofs enjoy the separation and subformula properties and have a structure that can represent how patterns lying in normal proofs can be recovered from the graph of the original proof with cuts.
id UFPE_103129927ff16c1210af89bded7ed177
oai_identifier_str oai:repositorio.ufpe.br:123456789/18618
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ANDRADE, Laís Sousa dehttp://lattes.cnpq.br/2778154954981835http://lattes.cnpq.br/9932708325371272OLIVEIRA, Anjolina Grisi deQUEIROZ, Ruy José Guerra Barretto de2017-04-24T14:03:12Z2017-04-24T14:03:12Z2015-07-29https://repositorio.ufpe.br/handle/123456789/18618ark:/64986/00130000059vfN-Graphs is a multiple conclusion natural deduction with proofs as directed graphs, motivated by the idea of proofs as geometric objects and aimed towards the study of the geometry of Natural Deduction systems. Following that line of research, this work revisits the system under a purely combinatorial perspective, determining geometrical conditions on the graphs of proofs to explain its soundness criterion and proof growth during normalization. Applying recent developments in the fields of proof graphs, proof-nets and N-Graphs itself, we propose a linear time algorithm for proof verification of the full system, a result that can be related to proof-nets solutions from Murawski (2000) and Guerrini (2011), and a normalization procedure based on the notion of sub-N-Graphs, introduced by Carvalho, in 2014. We first present a new soundness criterion for meta-edges, along with the extension of Carvalho’s sequentization proof for the full system. For this criterion we define an algorithm for proof verification that uses a DFS-like search to find invalid cycles in a proof-graph. Since the soundness criterion in proof graphs is analogous to the proof-nets procedure, the algorithm can also be extended to check proofs in the multiplicative linear logic without units (MLL−) with linear time complexity. The new normalization proposed here combines a modified version of Alves’ (2009) original beta and permutative reductions with an adaptation of Carbone’s duplication operation on sub-N-Graphs. The procedure is simpler than the original one and works as an extension of both the normalization defined by Prawitz and the combinatorial study developed by Carbone, i.e. normal proofs enjoy the separation and subformula properties and have a structure that can represent how patterns lying in normal proofs can be recovered from the graph of the original proof with cuts.CNPQN-Grafos é uma dedução natural de múltiplas conclusões onde provas são representadas como grafos direcionados, motivado pela idéia de provas como objetos geométricos e com o objetivo de estudar a geometria de sistemas de Dedução Natural. Seguindo esta linha de pesquisa, este trabalho revisita o sistema sob uma perpectiva puramente combinatorial, determinando condições geométricas nos grafos de prova para explicar seu critério de corretude e crescimento da prova durante a normalização. Aplicando desenvolvimentos recentes nos campos de grafos de prova, proof-nets e dos próprios N-Grafos, propomos um algoritmo linear para verificação de provas para o sistema completo, um resultado que pode ser comparado com soluções para roof-nets desenvolvidas por Murawski (2000) e Guerrini (2011), e um procedimento de normalização baseado na noção de sub-N-Grafos, introduzidas por Carvalho, em 2014. Apresentamos primeiramente um novo critério de corretude para meta-arestas, juntamente com a extensão para todo o sistema da prova da sequentização desenvolvida por Carvalho. Para este critério definimos um algoritmo para verificação de provas que utiliza uma busca parecida com a DFS (Busca em Profundidade) para encontrar ciclos inválidos em um grafo de prova. Como o critério de corretude para grafos de provas é análogo ao procedimento para proof-nets, o algoritmo pode também ser estendido para validar provas em Lógica Linear multiplicativa sem units (MLL−) com complexidade de tempo linear. A nova normalização proposta aqui combina uma versão modificada das reduções beta e permutativas originais de Alves com uma adaptação da operação de duplicação proposta por Carbone para ser aplicada a sub-N-Grafos. O procedimento é mais simples do que o original e funciona como uma extensão da normalização definida por Prawitz e do estudo combinatorial desenvolvido por Carbone, i.e. provas em forma normal desfrutam das propriedades da separação e subformula e possuem uma estrutura que pode representar como padrões existentes em provas na forma normal poderiam ser recuperados a partir do grafo da prova original com cortes.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessN-GrafosSub-N-GrafosDedução NaturalNormalizaçãoDuplicaçãoGrafos direcionadosDFSProof-netsN-GraphsSub-N-GraphsNatural deductionNormalizationDuplicationDirected graphsDFSProof-netsA combinatorial study of soundness and normalization in n-graphsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILdissertacao-mestrado.pdf.jpgdissertacao-mestrado.pdf.jpgGenerated Thumbnailimage/jpeg1302https://repositorio.ufpe.br/bitstream/123456789/18618/5/dissertacao-mestrado.pdf.jpg90913a53c621eb17de08029ed1cb5ee3MD55ORIGINALdissertacao-mestrado.pdfdissertacao-mestrado.pdfapplication/pdf2772669https://repositorio.ufpe.br/bitstream/123456789/18618/1/dissertacao-mestrado.pdf25b575026c012270168ca5a4c397d063MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/18618/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/18618/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTdissertacao-mestrado.pdf.txtdissertacao-mestrado.pdf.txtExtracted texttext/plain177556https://repositorio.ufpe.br/bitstream/123456789/18618/4/dissertacao-mestrado.pdf.txt8e0f6b00b7ff9755a9f2bfd709de14e7MD54123456789/186182019-10-25 08:11:01.266oai:repositorio.ufpe.br:123456789/18618TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:11:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv A combinatorial study of soundness and normalization in n-graphs
title A combinatorial study of soundness and normalization in n-graphs
spellingShingle A combinatorial study of soundness and normalization in n-graphs
ANDRADE, Laís Sousa de
N-Grafos
Sub-N-Grafos
Dedução Natural
Normalização
Duplicação
Grafos direcionados
DFS
Proof-nets
N-Graphs
Sub-N-Graphs
Natural deduction
Normalization
Duplication
Directed graphs
DFS
Proof-nets
title_short A combinatorial study of soundness and normalization in n-graphs
title_full A combinatorial study of soundness and normalization in n-graphs
title_fullStr A combinatorial study of soundness and normalization in n-graphs
title_full_unstemmed A combinatorial study of soundness and normalization in n-graphs
title_sort A combinatorial study of soundness and normalization in n-graphs
author ANDRADE, Laís Sousa de
author_facet ANDRADE, Laís Sousa de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2778154954981835
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9932708325371272
dc.contributor.author.fl_str_mv ANDRADE, Laís Sousa de
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Anjolina Grisi de
dc.contributor.advisor-co1.fl_str_mv QUEIROZ, Ruy José Guerra Barretto de
contributor_str_mv OLIVEIRA, Anjolina Grisi de
QUEIROZ, Ruy José Guerra Barretto de
dc.subject.por.fl_str_mv N-Grafos
Sub-N-Grafos
Dedução Natural
Normalização
Duplicação
Grafos direcionados
DFS
Proof-nets
N-Graphs
Sub-N-Graphs
Natural deduction
Normalization
Duplication
Directed graphs
DFS
Proof-nets
topic N-Grafos
Sub-N-Grafos
Dedução Natural
Normalização
Duplicação
Grafos direcionados
DFS
Proof-nets
N-Graphs
Sub-N-Graphs
Natural deduction
Normalization
Duplication
Directed graphs
DFS
Proof-nets
description N-Graphs is a multiple conclusion natural deduction with proofs as directed graphs, motivated by the idea of proofs as geometric objects and aimed towards the study of the geometry of Natural Deduction systems. Following that line of research, this work revisits the system under a purely combinatorial perspective, determining geometrical conditions on the graphs of proofs to explain its soundness criterion and proof growth during normalization. Applying recent developments in the fields of proof graphs, proof-nets and N-Graphs itself, we propose a linear time algorithm for proof verification of the full system, a result that can be related to proof-nets solutions from Murawski (2000) and Guerrini (2011), and a normalization procedure based on the notion of sub-N-Graphs, introduced by Carvalho, in 2014. We first present a new soundness criterion for meta-edges, along with the extension of Carvalho’s sequentization proof for the full system. For this criterion we define an algorithm for proof verification that uses a DFS-like search to find invalid cycles in a proof-graph. Since the soundness criterion in proof graphs is analogous to the proof-nets procedure, the algorithm can also be extended to check proofs in the multiplicative linear logic without units (MLL−) with linear time complexity. The new normalization proposed here combines a modified version of Alves’ (2009) original beta and permutative reductions with an adaptation of Carbone’s duplication operation on sub-N-Graphs. The procedure is simpler than the original one and works as an extension of both the normalization defined by Prawitz and the combinatorial study developed by Carbone, i.e. normal proofs enjoy the separation and subformula properties and have a structure that can represent how patterns lying in normal proofs can be recovered from the graph of the original proof with cuts.
publishDate 2015
dc.date.issued.fl_str_mv 2015-07-29
dc.date.accessioned.fl_str_mv 2017-04-24T14:03:12Z
dc.date.available.fl_str_mv 2017-04-24T14:03:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18618
dc.identifier.dark.fl_str_mv ark:/64986/00130000059vf
url https://repositorio.ufpe.br/handle/123456789/18618
identifier_str_mv ark:/64986/00130000059vf
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/18618/5/dissertacao-mestrado.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/18618/1/dissertacao-mestrado.pdf
https://repositorio.ufpe.br/bitstream/123456789/18618/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/18618/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/18618/4/dissertacao-mestrado.pdf.txt
bitstream.checksum.fl_str_mv 90913a53c621eb17de08029ed1cb5ee3
25b575026c012270168ca5a4c397d063
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
8e0f6b00b7ff9755a9f2bfd709de14e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172728260395008